Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Riberio Da Silva, Mavr

  • Google
  • 1
  • 1
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Thermochemical study of 2,5-dimethyl-3-furancarboxylic acid, 4,5-dimethyl-2-furaldehyde, and 3-acetyl-2,5-dimethylfuran9citations

Places of action

Chart of shared publication
Amaral, Lmpf
1 / 5 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Amaral, Lmpf
OrganizationsLocationPeople

article

Thermochemical study of 2,5-dimethyl-3-furancarboxylic acid, 4,5-dimethyl-2-furaldehyde, and 3-acetyl-2,5-dimethylfuran

  • Riberio Da Silva, Mavr
  • Amaral, Lmpf
Abstract

The standard (p degrees = 0 1 MPa) molar enthalpies of formation in the gaseous state at T = 298 15 K for 2 5-dimethyl-3-furancarboxylic acid 3 acetyl-2 5-dimethylfuran and 4 5 dimethyl 2 furaldehyde were derived from the values of the standard molar enthalpies of formation in the condensed phase and the standard molar enthalpies of phase transition from the condensed to the gaseous state The values of the standard molar enthalpies of formation of the compounds in the condensed phases were calculated from the measurements of the standard massic energies of combustion obtained by static bomb combustion calorimetry The enthalpies of vaporization/sublimation were measured by Calvet high temperature microcalorimetry For 2 5-dimethyl 3 furancarboxylic acid the standard enthalpy of sublimation was also calculated by the application of the Clausius-Clapeyron equation to the temperature dependence of the vapor pressures measured by the Knudsen effusion technique [GRAPHICS]

Topics
  • compound
  • phase
  • phase transition
  • combustion
  • microcalorimetry