Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zarzeczańska, Dorota

  • Google
  • 2
  • 4
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry31citations
  • 2008Determination of dissociation constants for coordination compounds of Cr(III) and Co(III) using potentiometric and spectrophotometric methods15citations

Places of action

Chart of shared publication
Jacewicz, Dagmara
2 / 12 shared
Wyrzykowski, Dariusz
1 / 7 shared
Chmurzyński, Lech
2 / 11 shared
Chylewska, Agnieszka
1 / 2 shared
Chart of publication period
2011
2008

Co-Authors (by relevance)

  • Jacewicz, Dagmara
  • Wyrzykowski, Dariusz
  • Chmurzyński, Lech
  • Chylewska, Agnieszka
OrganizationsLocationPeople

article

Determination of dissociation constants for coordination compounds of Cr(III) and Co(III) using potentiometric and spectrophotometric methods

  • Chylewska, Agnieszka
  • Zarzeczańska, Dorota
  • Jacewicz, Dagmara
  • Chmurzyński, Lech
Abstract

The acid–base properties of analogous complex ions of chromium(III) and cobalt(III) in aqueous solution have been studied. The equilibrium constants for all metal complexes were determined by using potentiometric and spectrophotometric titration methods. First, dissociation constants for the studied complexes of Cr(III) and Co(III) were determined by means of the potentiometric titration method and using the STOICHIO computer programme. Then, pH-spectrophotometric titrations were performed and the OriginPro 7.5 computer programme was used to calculate the same constants. The measurements using both methods were carried out under the same conditions of temperature, T = 298.15 K, and over the same pH range 2.00–10.00, respectively. It turned out that the two methods used enabled us to obtain acidity constants in very good agreement.

Topics
  • compound
  • chromium
  • cobalt
  • titration