People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skalomenos, Konstantinos
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023A triaxiality‐dependent fracture model for hot‐rolled sections made of S355 steel
- 2023Testing of a Novel Induction Heat Treated Steel Brace with Enhanced Buckling Behaviourcitations
- 2023Comparative study on fracture characteristics of carbon and stainless steel bolt materialcitations
- 2022Performance-based seismic design of intentionally eccentric IH-treated steel braced frames
- 2021Seismic design of steel frames with intentionally eccentric induction-heat treated steel braces
- 2021Experimental study of ferritic stainless steel bolted T-stubs under monotonic loadingcitations
- 2020Multiple-damage state retrofit of steel MRFs with composite beams using a minimal-disturbance arm dampercitations
- 2018Use of induction heating in steel structures: material properties and novel brace designcitations
- 2017Inelastic behavior of circular concrete-filled steel tubes: monotonic versus cyclic responsecitations
- 2016Modeling of circular concrete-filled steel tubes subjected to cyclic lateral loadingcitations
Places of action
Organizations | Location | People |
---|
article
Comparative study on fracture characteristics of carbon and stainless steel bolt material
Abstract
Bolt fracture often limits the ultimate strength and deformation capacity of bolted connections and leads to overall joint failure. Therefore, the prediction of structural collapse under extreme loads necessitates the incorporation of a reliable fracture model that reflects the observed structural response of bolts. This paper reports a comprehensive experimental and numerical study into the structural behaviour, ductility and fracture characteristics of Grade A4–80 austenitic stainless steel bolts and carbon steel 8.8 bolts in tension, which are commonly used as fasteners in bolted connections. Tensile tests were performed on smooth material coupons machined from both bolt grades to obtain the material response. Thereafter, tensile tests were performed on notched specimens from both grades, allowing the fracture characteristics to be studied over a range of stress triaxialities and the development of an equation relating the plastic strain at fracture to the stress triaxiality. 2D axisymmetric and 3D advanced finite element models were calibrated against the experimental results and damage propagation parameters. The developed numerical models are shown to perfectly replicate the observed experimental behaviour of the tested bolt materials under predominantly tensile loading, including fracture. Both experimental and numerical results confirm the superior ductility of A4–80 bolts over their 8.8 counterparts.