Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jaamala, Lauri

  • Google
  • 2
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Probabilistic modelling of residual stresses in cold-formed rectangular hollow sections8citations
  • 2022Effective material model for cold-formed rectangular hollow sections in beam element-based advanced analysis4citations

Places of action

Chart of shared publication
Rinne, Milla
1 / 4 shared
Laurila, Jussi
1 / 5 shared
Mela, Kristo
2 / 17 shared
Peura, Pasi
1 / 56 shared
Tulonen, Juha
1 / 1 shared
Hyvärinen, Anssi
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Rinne, Milla
  • Laurila, Jussi
  • Mela, Kristo
  • Peura, Pasi
  • Tulonen, Juha
  • Hyvärinen, Anssi
OrganizationsLocationPeople

article

Effective material model for cold-formed rectangular hollow sections in beam element-based advanced analysis

  • Tulonen, Juha
  • Jaamala, Lauri
  • Mela, Kristo
  • Hyvärinen, Anssi
Abstract

This study develops and validates an effective material model for cold-formed rectangular hollow sections. Advanced design methods utilize non-linear finite element analysis in design. An accurate calculation model, which is usually beam element-based, is crucial such that the design outcome is safe but economical. Unfortunately, cold-formed sections have non-linear residual stress distribution over the material thickness, that cannot be explicitly modelled in general-purpose beam elements. Additionally, corner regions of cold-formed sections have higher material strength compared to flat regions. This beneficial feature is usually disregarded by assuming the flat region properties for the entire cross-section. This study develops an effective material model that replicates a stress-strain curve that would be obtained if the tensile test was made for the entire cross-section instead of a separate tensile coupon. Consequently, the effects of residual stresses and corner strength enhancements are included in the effective material model such that their consideration in beam element-based advanced design method is effortless. The effective material model is validated for the steel grade S700 against numerical shell element buckling tests and excellent modelling accuracy is achieved. ; Peer reviewed

Topics
  • impedance spectroscopy
  • strength
  • steel
  • stress-strain curve
  • finite element analysis