Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jiménez-Peña, C.

  • Google
  • 1
  • 3
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Influence of hole-making procedures on fatigue behaviour of high strength steel plates22citations

Places of action

Chart of shared publication
Goulas, Constantinos
1 / 29 shared
Debruyne, D.
1 / 8 shared
Rossi, B.
1 / 35 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Goulas, Constantinos
  • Debruyne, D.
  • Rossi, B.
OrganizationsLocationPeople

article

Influence of hole-making procedures on fatigue behaviour of high strength steel plates

  • Jiménez-Peña, C.
  • Goulas, Constantinos
  • Debruyne, D.
  • Rossi, B.
Abstract

<p>High strength steels (HSS) offer a unique opportunity to reduce the weight of civil and off-shore structures and heavy-duty machinery. Such equipment is subjected to continuous cyclic loading and therefore fatigue failure often happens where concentrations of stresses are present, the latter most of the time being caused by connection details. Previous studies have demonstrated that an increase in yield strength does not lead to a proportional increase in fatigue resistance, particularly in welded connections. In that regard, the utilisation of bolted joints is often proposed as an alternative to welded joints. The hole-making procedure is an essential factor in the assessment of the fatigue resistance of bolted joints, since different hole-making techniques yield different surface qualities and residual stresses, which consequently impact the final fatigue limit. This work addresses the effect of the main mechanical (punching, drilling and waterjet) and thermal (plasma and laser) cutting techniques on the fatigue performance of HSS plates containing holes. A series of fatigue tests with moderately thick plates made of S500MC were carried out using different hole-making techniques. The surface, geometry and residual damage of every hole-making procedure were studied by means of optical evaluation, hardness tests and roughness evaluation, and large differences were observed: drilling was found to produce the most geometrically accurate hole and the smoothest surface finish; while laser and waterjet cutting displayed the best fatigue performance. The results of this research can provide an estimation of the applicability of each hole-making process to this particular HSS grade.</p>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • fatigue
  • hardness
  • yield strength
  • high speed steel