Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shimada, Hironari

  • Google
  • 1
  • 3
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Use of induction heating in steel structures: material properties and novel brace design15citations

Places of action

Chart of shared publication
Kurata, Masahiro
1 / 2 shared
Skalomenos, Konstantinos
1 / 10 shared
Nishiyama, Minehiro
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Kurata, Masahiro
  • Skalomenos, Konstantinos
  • Nishiyama, Minehiro
OrganizationsLocationPeople

article

Use of induction heating in steel structures: material properties and novel brace design

  • Kurata, Masahiro
  • Skalomenos, Konstantinos
  • Nishiyama, Minehiro
  • Shimada, Hironari
Abstract

Induction heat (IH) treatment technology is a very efficient way to increase several times the strength of a selected part of steel elements. This paper presents an experimental investigation on the material properties of IH-treated steel elements and a novel application to steel braces. The IH treatment technology and manufacturing process are first reviewed and then, the new material properties obtained by a series of coupon tests and Vickers hardness tests are reported. Compared with the conventional steel, the IH-treated steel offers two-to-three times higher yield stress and tensile strength, but three times lower fracture ductility. The proposed steel brace is a steel tube with a partial strength enhancement in its cross-section. One-half of the section is treated by IH, while the remaining maintains the properties of conventional steel. The conventional steel part yields earlier and dissipates energy, whereas the IH steel part remains elastic until large deformation. An intentional eccentricity is also introduced along the brace length to magnify further the contrast of material benefits. The effective combination of the partial strength enhancement and eccentricity provides the brace with a beneficial multiphase response. The brace exhibits a high tensile post-yielding stiffness nearly equal to 20% of the initial stiffness and stably dissipates energy during cyclic loading up to 2.0% story drift by delaying the onset of local buckling.

Topics
  • impedance spectroscopy
  • strength
  • steel
  • hardness
  • tensile strength
  • ductility