People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gastaldi, Emmanuelle
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Monitoring the degradation status of biodegradable polymers by assessing thermal properties
- 2023Compostability of certified biodegradable plastics at industrial scale processing conditions
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2019How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based compositescitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018Fast-Biodegrading polymers
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Nanostructured biopolymers obtained from blends by extrusion
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Adhesion properties of wheat-based particlescitations
- 2012Protein/Clay Nano-Biocompositescitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
Places of action
Organizations | Location | People |
---|
article
Adhesion properties of wheat-based particles
Abstract
Specific AFM analytical methods were tested to the surface evaluation of wheat powders at micrometric scale in dry conditions. The objective was to evaluate the adhesion properties of particles based on the main wheat endosperm components (starch, protein, and arabinoxylan) that are characterized by large diversity in terms of chemical composition and particle characteristics. Experiments were conducted by using the force spectroscopy mode to determine interactions generated by the surfaces of particles that were glued on AFM tips, and two reference flat and smooth surfaces, a glass and a polysine slide. Particular care has been devoted to characterize the surfaces in contact since local contact radius is a key parameter in the interpretation of the interactions. The statistical analysis of the normalized adhesion forces have shown the sensitivity of the AFM technique for hydrophobic wheat components and their correlation with the surface tension of the particles.