People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinomaa, Tatu
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024OpenPFC:An open-source framework for high performance 3D phase field crystal simulationscitations
- 2024OpenPFCcitations
- 2024Influence of laser beam shaping on the cracking behavior of tungsten at single weld linescitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718citations
- 2023Chromium-based bcc-superalloys strengthened by iron supplementscitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximationcitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718:Quasi-Binary Approximationcitations
- 2022Dislocation density in cellular rapid solidification using phase field modeling and crystal plasticitycitations
- 2022An atomistic simulation study of rapid solidification kinetics and crystal defects in dilute Al–Cu alloyscitations
- 2022Numerical Design Of High Entropy Super Alloy Using Multiscale Materials Modeling And Deep Learning
- 2022Multiscale analysis of crystalline defect formation in rapid solidification of pure aluminium and aluminium–copper alloyscitations
- 2022Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steelcitations
- 2022Multiscale analysis of crystal defect formation in rapid solidification of pure aluminium and aluminium-copper alloys
- 2022Laser Powder Bed Fusion Of High Carbon Tool Steels
- 2022Experimental and Calphad Methods for Evaluating Residual Stresses and Solid-State Shrinkage after Solidificationcitations
- 2022Opportunities Of Physics-Based Multi-Scale Modeling Tools In Assessing Intra-Grain Heterogeneities, Polycrystal Properties And Residual Stresses Of AM Metals
- 2021Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticitycitations
- 2021Quantitative phase field simulations of polycrystalline solidification using a vector order parametercitations
- 2021Orientation Gradients in Rapidly Solidified Pure Aluminum Thin Filmscitations
- 2020Development and validation of coupled erosion-corrosion model for wear resistant steels in environments with varying pHcitations
- 2020Modelling selective laser melting machine configurations
- 2020Phase field modeling of rapid resolidification of Al-Cu thin filmscitations
- 2020The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steelcitations
- 2020Phase field modeling of rapid solidification for thin films and additive manufacturing ; Nopean jähmettymisen faasikenttämallinnusta ohutkalvoille ja materiaalia lisäävälle valmistuksellecitations
- 2019Data-Driven Optimization Of Metal Additive Manufacturing Solutions
- 2019On The Linking Performance Evaluation Toolset To Process-structure-properties Mapping Of Selective Laser Melting 316L Stainless Steel Using Micromechanical Approach With A Length-scale Dependent Crystal Plasticity
- 2019Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidificationcitations
- 2019Process-Structure-Properties-Performance Modeling for Selective Laser Meltingcitations
- 2018Process-to-structure mapping of selective laser melting of a nickel based superalloy via phase field modelling
- 2018Micromechanical model for fatigue limit of metal AM parts and materials
- 2017Micromechanical modeling of failure behavior of metallic materialscitations
- 2016Effective interface model for design and tailoring of wc-co microstructurescitations
- 2016Modeling chloride ingress under freeze-thaw loading – 3D fem approach
- 2016Modeling chloride ingress under freeze-thaw loading – 3D fem approach
- 2016Component scale process model for metal additive manufacturing
- 2015Effective interface model for design and tailoring of wc-co microstructures
- 2015Mesoscale modelling of short crack initiation in metallic selective laser melting microstructures
- 2015Phase field analysis of solidification structures and interface composition in WC-Co hard metals
Places of action
Organizations | Location | People |
---|
article
Phase field modeling of rapid resolidification of Al-Cu thin films
Abstract
A binary alloy multi-order parameter phase field model is used to study rapid solidification in Al-Cu under conditions corresponding to recent dynamic transmission electron microscopy (DTEM) experiments. The phase field model's sharp interface limit is set through a recent matched asymptotic analysis to follow the solute trapping and interface undercooling kinetics of the Continuous Growth Model (CGM). The phase field model convergence to the CGM sharp interface model is investigated, and based on this an optimal interface width is chosen to simulate the DTEM experimental conditions. The temperature distribution used in the phase field simulations is taken from an analytic expression extracted from experiments. Simulated solidification structures are compared to experiments, including time-resolved DTEM images and post-mortem TEM-based image quality and orientation maps. We find that the large scale morphological features of the simulated microstructures are in good agreement with the experiments, and the corresponding concentration profiles that emerge are in qualitative agreement with experiments. These results show that phase field simulations, informed with DTEM experiments, provides a promising framework to investigate rapidly solidified microstructure evolution and solute segregation, and to calibrate hard-to-determine solidification parameters.