Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Österlund, Elmeri

  • Google
  • 8
  • 24
  • 163

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Stability and residual stresses of sputtered wurtzite AlScN thin films33citations
  • 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabrication16citations
  • 2021Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewalls21citations
  • 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfaces12citations
  • 2019Mechanical properties and reliability of aluminum nitride thin films49citations
  • 2018Stability of Piezoelectric Al1-xScxN Thin Filmscitations

Places of action

Chart of shared publication
Bespalova, Kristina
4 / 8 shared
Karuthedath, Cyril Baby
2 / 8 shared
Paulasto-Kröckel, Mervi
8 / 31 shared
Ross, Glenn
6 / 35 shared
Mertin, Stefan
3 / 6 shared
Pensala, Tuomas
4 / 17 shared
Karuthedath, Cyril
1 / 3 shared
Thanniyil Sebastian, Abhilash
1 / 5 shared
Trebala, Michal
1 / 3 shared
Caro, Miguel A.
1 / 22 shared
Hollmann, Andreas
1 / 1 shared
Genzel, Christoph
1 / 6 shared
Meixner, Matthias
1 / 3 shared
Žukauskaitė, Agnė
1 / 7 shared
Koppinen, Panu
1 / 1 shared
Klaus, Manuela
1 / 5 shared
Sebastian, Abhilash Thanniyil
1 / 2 shared
Miikkulainen, Ville
1 / 28 shared
Seppänen, Heli
1 / 6 shared
Kuisma, Heikki
1 / 1 shared
Suihkonen, Sami
1 / 25 shared
Torkkeli, Altti
2 / 2 shared
Rontu, Ville
1 / 5 shared
Kinnunen, Jere
1 / 1 shared
Chart of publication period
2021
2020
2019
2018

Co-Authors (by relevance)

  • Bespalova, Kristina
  • Karuthedath, Cyril Baby
  • Paulasto-Kröckel, Mervi
  • Ross, Glenn
  • Mertin, Stefan
  • Pensala, Tuomas
  • Karuthedath, Cyril
  • Thanniyil Sebastian, Abhilash
  • Trebala, Michal
  • Caro, Miguel A.
  • Hollmann, Andreas
  • Genzel, Christoph
  • Meixner, Matthias
  • Žukauskaitė, Agnė
  • Koppinen, Panu
  • Klaus, Manuela
  • Sebastian, Abhilash Thanniyil
  • Miikkulainen, Ville
  • Seppänen, Heli
  • Kuisma, Heikki
  • Suihkonen, Sami
  • Torkkeli, Altti
  • Rontu, Ville
  • Kinnunen, Jere
OrganizationsLocationPeople

article

Metalorganic chemical vapor deposition of aluminum nitride on vertical surfaces

  • Paulasto-Kröckel, Mervi
  • Kuisma, Heikki
  • Ross, Glenn
  • Österlund, Elmeri
  • Suihkonen, Sami
  • Torkkeli, Altti
Abstract

Metalorganic chemical vapor deposited (MOCVD) aluminum nitride (AlN) on vertical sidewalls can be used to implement piezoelectric in-plane actuation and sensing in microelectromechanical system (MEMS) sensors. The AlN films should optimally cover conformally the sidewalls and have good crystal quality with c-axis oriented microstructure for optimal piezoelectric properties. Previous MOCVD AlN research has focused on using AlN as a buffer layer for other III-nitrides and so far, AlN growth has not been studied on large vertical surfaces. In this study, AlN thin films were grown using MOCVD on vertical sidewalls of fabricated templates and the conformality and crystal quality was characterized. The growth template fabrication was optimized with respect to surface roughness, the conformal coverage was analyzed by measuring the thickness profiles of the films, and the crystal quality was investigated using in-plane XRD and TEM. The AlN films have good crystal quality (FWHM 1.70°–3.44°) and c-axis orientation on vertical Si(1 1 1) sidewalls. However, the thicknesses of the films reduce approximately at a rate of 0.8–1.2 nm/μm down the sidewall. Lowering the reactor pressure improved the conformal coverage while changing the growth mode from columnar to step-flow, which also improved the film morphology. ; Peer reviewed

Topics
  • microstructure
  • surface
  • x-ray diffraction
  • thin film
  • aluminium
  • nitride
  • transmission electron microscopy
  • chemical vapor deposition
  • piezoelectric material