Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lang, T.

  • Google
  • 2
  • 14
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019An advanced experimental method and test rig concept for investigating the dynamic blade-tip/casing interactions under engine-like mechanical conditions27citations
  • 2007Reduction of threading dislocation density in Al0.12Ga0.88N epilayers by a multistep technique4citations

Places of action

Chart of shared publication
Ebert, C.
1 / 12 shared
Behnisch, T.
1 / 21 shared
Langkamp, A.
1 / 68 shared
Nitschke, S.
1 / 7 shared
Johann, E.
1 / 1 shared
Wollmann, T.
1 / 16 shared
Gude, Mike
1 / 775 shared
Törmä, P. T.
1 / 1 shared
Suihkonen, S.
1 / 4 shared
Odnoblyudov, M. A.
1 / 1 shared
Lipsanen, Harri
1 / 65 shared
Sopanen, Markku
1 / 10 shared
Bougrov, V. E.
1 / 2 shared
Svensk, O.
1 / 1 shared
Chart of publication period
2019
2007

Co-Authors (by relevance)

  • Ebert, C.
  • Behnisch, T.
  • Langkamp, A.
  • Nitschke, S.
  • Johann, E.
  • Wollmann, T.
  • Gude, Mike
  • Törmä, P. T.
  • Suihkonen, S.
  • Odnoblyudov, M. A.
  • Lipsanen, Harri
  • Sopanen, Markku
  • Bougrov, V. E.
  • Svensk, O.
OrganizationsLocationPeople

article

Reduction of threading dislocation density in Al0.12Ga0.88N epilayers by a multistep technique

  • Lang, T.
  • Törmä, P. T.
  • Suihkonen, S.
  • Odnoblyudov, M. A.
  • Lipsanen, Harri
  • Sopanen, Markku
  • Bougrov, V. E.
  • Svensk, O.
Abstract

<p>Although suitable for the reduction of the threading dislocation density in GaN layers the widely used two-step MOCVD method does not work as efficiently for AlGaN. This is due to slow surface diffusion of the Al species. In the present paper, the previously reported in situ multistep method for MOCVD growth of high-quality GaN films is adopted for the growth of Al<sub>0.12</sub>Ga<sub>0.88</sub>N films on c-plane sapphire. The developed method for AlGaN growth is virtually GaN free in the sense that no continuous film of GaN is needed near the substrate interface. Crack-free layers of Al<sub>0.12</sub>Ga<sub>0.88</sub>N with a thickness of about 2 μm are grown by the method. A sparse distribution of 3D GaN nucleation islands and stimulation of threading dislocation reactions enable a reduction of the threading dislocation density down to 5×10<sup>8</sup> cm<sup>-2</sup> in the Al<sub>0.12</sub>Ga<sub>0.88</sub>N films. The threading dislocation density is evaluated by etch-pit density measurements. High-resolution X-ray diffraction and transmission electron microscopy are used to study the crystallinity of the Al<sub>0.12</sub>Ga<sub>0.88</sub>N layers. Reflectometry is utilized to analyze film growth in situ. The surface morphology of GaN nucleation layers and Al<sub>0.12</sub>Ga<sub>0.88</sub>N epilayers is characterized by atomic force microscopy.</p>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • surface
  • x-ray diffraction
  • atomic force microscopy
  • crack
  • transmission electron microscopy
  • dislocation
  • crystallinity
  • reflectometry