People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poll, Rim C. J. Van De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Stability of In2O3 Nanoparticles in PTFEcontaining Gas Diffusion Electrodes for CO2 electroreduction to Formatecitations
- 2023Evolution of bismuth oxide catalysts during electrochemical CO2 reductioncitations
- 2020Cathodic Disintegration as an Easily Scalable Method for the Production of Sn-and Pb-Based Catalysts for CO2Reductioncitations
Places of action
Organizations | Location | People |
---|
article
Stability of In2O3 Nanoparticles in PTFEcontaining Gas Diffusion Electrodes for CO2 electroreduction to Formate
Abstract
Electrocatalytic conversion of CO2 to fuels and chemicals can help mitigate climate change by reuse of the greenhouse gas. Formic acid is an interesting product of electrochemical CO2 reduction, because it can serve as a liquid hydrogen carrier. Indium-based electrodes show promising activity and selectivity towards formic acid formation during CO2 electroreduction. However, the low stability of such electrodes at high current density limits their implementation in industry. Herein, we optimize a gas diffusion electrode (GDE) containing ∼6 nm In2O3 nanoparticles obtained by flame spray pyrolysis. The catalyst exhibits high initial faradaic efficiency towards formate (> 80%) at current densities up to 200 mA/cm2. In situ Raman spectroscopy reveals that the In2O3 particles rapidly reduce under reaction conditions, demonstrating that metallic indium is the active phase for CO2 reduction. Degradation mechanisms of the catalyst during 50 h at high current density were studied using XPS, in situ Raman, TEM and SEM, and elemental analysis of the electrolyte. Catalyst reduction, sintering of the active phase and dissolution of indium could be excluded as a cause of the declining FE. Adding carbon and hydrophobic PTFE particles to the catalyst in the GDE improves CO2 supply and prevents early saturation of the GDE by liquid electrolyte. The optimized GDE configuration inhibits hydrogen evolution and demonstrates increased stability during 50 h of CO2 electroreduction.