Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parsons, John

  • Google
  • 4
  • 27
  • 84

University of Amsterdam

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters6citations
  • 2022Biodegradability of novel high Tg poly(isosorbide-co-1,6-hexanediol) oxalate polyester in soil and marine environments28citations
  • 2022Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume7citations
  • 2014Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge43citations

Places of action

Chart of shared publication
Weinland, Daniel H.
1 / 1 shared
Maas, Kevin Van Der
1 / 1 shared
Gruter, Gert-Jan M.
1 / 1 shared
Rijke, Eva De
1 / 1 shared
Wang, Yue
1 / 15 shared
Tietema, Albert
1 / 1 shared
Putten, Robert-Jan Van
1 / 1 shared
Trijnes, Dio
1 / 1 shared
Putten, R.-J. Van
1 / 1 shared
Maas, K. Van Der
1 / 1 shared
Gruter, G.-J. M.
1 / 4 shared
Davey, C. J. E.
1 / 3 shared
Wang, Y.
1 / 134 shared
Tietema, A.
1 / 4 shared
Hartog, Niels
1 / 2 shared
Hassanizadeh, S. Majid
1 / 1 shared
Ertl, Siegmund
1 / 1 shared
Gerritse, Jan
1 / 1 shared
Leeuwen, Johan A. Van
1 / 1 shared
De Voogt, Pim
1 / 1 shared
Waaijers, S. L.
1 / 2 shared
Jurgens, S. S.
1 / 1 shared
Helmus, Rick
1 / 2 shared
Vleugel, M.
1 / 1 shared
Kraak, M. H. S.
1 / 1 shared
Uittenbogaard, D.
1 / 1 shared
Dunnebier, D.
1 / 1 shared
Chart of publication period
2024
2022
2014

Co-Authors (by relevance)

  • Weinland, Daniel H.
  • Maas, Kevin Van Der
  • Gruter, Gert-Jan M.
  • Rijke, Eva De
  • Wang, Yue
  • Tietema, Albert
  • Putten, Robert-Jan Van
  • Trijnes, Dio
  • Putten, R.-J. Van
  • Maas, K. Van Der
  • Gruter, G.-J. M.
  • Davey, C. J. E.
  • Wang, Y.
  • Tietema, A.
  • Hartog, Niels
  • Hassanizadeh, S. Majid
  • Ertl, Siegmund
  • Gerritse, Jan
  • Leeuwen, Johan A. Van
  • De Voogt, Pim
  • Waaijers, S. L.
  • Jurgens, S. S.
  • Helmus, Rick
  • Vleugel, M.
  • Kraak, M. H. S.
  • Uittenbogaard, D.
  • Dunnebier, D.
OrganizationsLocationPeople

article

Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume

  • Hartog, Niels
  • Parsons, John
  • Hassanizadeh, S. Majid
  • Ertl, Siegmund
  • Gerritse, Jan
  • Leeuwen, Johan A. Van
Abstract

<p>The anaerobic degradation of aromatic hydrocarbons in a plume originating from a Pintsch gas tar-DNAPL zone was investigated using molecular, isotopic- and microbial analyses. Benzene concentrations diminished at the relatively small meter scale dimensions of the nitrate reducing plume fringe. The ratio of benzene to toluene, ethylbenzene, xylenes and naphthalene (BTEXN) in the fringe zone compared to the plume zone, indicated relatively more loss of benzene in the fringe zone than TEXN. This was substantiated by changes in relative concentrations of BTEXN, and multi-element compound specific isotope analysis for δ<sup>2</sup>H and δ<sup>13</sup>C. This was supported by the presence of (abcA) genes, indicating the presumed benzene carboxylase enzyme in the nitrate-reducing plume fringe. Biodegradation of most hydrocarbon contaminants at iron reducing conditions in the plume core, appears to be quantitatively of greater significance due to the large volume of the plume core, rather than relatively faster biodegradation under nitrate reducing conditions at the smaller volume of the plume fringe. Contaminant concentration reductions by biodegradation processes were shown to vary distinctively between the source, plume (both iron-reducing) and fringe (nitrate-reducing) zones of the plume. High anaerobic microbial activity was detected in the plume zone as well as in the dense non aqueous phase liquid (DNAPL) containing source zone. Biodegradation of most, if not all, other water-soluble Pintsch gas tar aromatic hydrocarbon contaminants occur at the relatively large dimensions of the anoxic plume core. The highest diversity and concentrations of metabolites were detected in the iron-reducing plume core, where the sum of parent compounds of aromatic hydrocarbons was greater than 10 mg/L. The relatively high concentrations of metabolites suggest a hot spot for anaerobic degradation in the core of the plume downgradient but relatively close to the DNAPL containing source zone.</p>

Topics
  • compound
  • phase
  • iron