Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tobler, D. J.

  • Google
  • 3
  • 10
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements30citations
  • 2013Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements30citations
  • 2008Controlled biomineralization of magnetite (Fe 3 O 4 ) by Magnetospirillum gryphiswaldense29citations

Places of action

Chart of shared publication
Mitchell, J. B. A.
1 / 1 shared
Phoenix, V. R.
2 / 2 shared
Sham, E.
2 / 2 shared
Mantle, M. D.
2 / 5 shared
Mitchell, J.
1 / 3 shared
Johns, M. L.
1 / 3 shared
Benning, L. G.
1 / 1 shared
Bonneville, S.
1 / 1 shared
Ardelean, I.
1 / 1 shared
Moisescu, C.
1 / 2 shared
Chart of publication period
2013
2008

Co-Authors (by relevance)

  • Mitchell, J. B. A.
  • Phoenix, V. R.
  • Sham, E.
  • Mantle, M. D.
  • Mitchell, J.
  • Johns, M. L.
  • Benning, L. G.
  • Bonneville, S.
  • Ardelean, I.
  • Moisescu, C.
OrganizationsLocationPeople

article

Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements

  • Mitchell, J. B. A.
  • Phoenix, V. R.
  • Tobler, D. J.
  • Sham, E.
  • Mantle, M. D.
Abstract

A range of nuclear magnetic resonance (NMR) techniques are employed to provide novel, non-invasive measurements of both the structure and transport properties of porous media following a biologically mediated calcite precipitation reaction. Both a model glass bead pack and a sandstone rock core were considered. Structure was probed using magnetic resonance imaging (MRI) via a combination of quantitative one-dimensional profiles and three-dimensional images, applied before and after the formation of calcite in order to characterise the spatial distribution of the precipitate. It was shown through modification and variations of the calcite precipitation treatment that differences in the calcite fill would occur but all methods were successful in partially blocking the different porous media. Precipitation was seen to occur predominantly at the inlet of the bead pack, whereas precipitation occurred almost uniformly along the sandstone core. Transport properties are quantified using pulse field gradient (PFG) NMR measurements which provide probability distributions of molecular displacement over a set observation time (propagators), supplementing conventional permeability measurements. Propagators quantify the local effect of calcite formation on system hydrodynamics and the extent of stagnant region formation. Collectively, the combination of NMR measurements utilised here provides a toolkit for determining the efficacy of a biological-precipitation reaction for partially blocking porous materials. © 2013 Elsevier B.V.

Topics
  • porous
  • glass
  • glass
  • precipitate
  • precipitation
  • permeability
  • Nuclear Magnetic Resonance spectroscopy
  • one-dimensional