Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haq, Emdadul

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Response of short jute fibre preform based epoxy composites subjected to low-velocity impact loadings6citations

Places of action

Chart of shared publication
Saifullah, Abu Naser Muhammad
1 / 22 shared
Sarker, Forkan
1 / 16 shared
Islam, Ariful
1 / 2 shared
Sayeed, Abu
1 / 2 shared
Bhuiyan, Anamul Hoque
1 / 1 shared
Dhakal, Hom
1 / 46 shared
Ahamed, Bashir
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Saifullah, Abu Naser Muhammad
  • Sarker, Forkan
  • Islam, Ariful
  • Sayeed, Abu
  • Bhuiyan, Anamul Hoque
  • Dhakal, Hom
  • Ahamed, Bashir
OrganizationsLocationPeople

article

Response of short jute fibre preform based epoxy composites subjected to low-velocity impact loadings

  • Saifullah, Abu Naser Muhammad
  • Sarker, Forkan
  • Islam, Ariful
  • Haq, Emdadul
  • Sayeed, Abu
  • Bhuiyan, Anamul Hoque
  • Dhakal, Hom
  • Ahamed, Bashir
Abstract

This work aimed to investigate the low velocity impact behaviour of short jute fibre non-woven preform epoxy matrix composites experimentally. Dry fibre preforms were developed using an optimised process and a laboratory made preforming device. The effects of alkali and poly vinyl alcohol (PVA binder) treatments on impact performances of jute composites were investigated and compared at 3 J and 6 J impact energy levels. To identify the failure modes of tested composites, the X-ray µCT tomography was employed. The results demonstrated that the developed untreated short jute fibre preform reinforced composites absorbed a higher impact energy, when they were compared to treated (alkali or PVA binder) composites. For untreated composites, maximum impact forces at 3 J and 6 J energies, were found as ⁓2478 N and ⁓2319 N, respectively; for the PVA treatment these values were measured as ⁓2457 N and ⁓2216 N, while, at same energy levels, alkali treated composites showed the lowest values as ⁓1683 N and ⁓1440 N, respectively. Untreated jute fibre contains natural matrices such as hemicellulose, lignin and waxes, which ensured a positive response to absorb more energy upon impact loading. In contrast, the alkali treatment facilitates a highly fibre packed composite structure, which accelerated the impact crack propagation in tested composites, resulting in lower resistance to impact energy. Although, PVA treated composites showed reduced impact properties compared to untreated composites due to the PVA polymer brittleness on the treated fibre surface during the impact incidents, this treatment demonstrated better impact responses over the alkali treatment. The application of PVA binder on alkali-treated fibres provided an extra support to fibres and a better fibre/matrix interface and hence, this combined treatment demonstrated a slightly better impact resistance (⁓2027 N and ⁓1874 N impact forces at 3 J and 6 J respectively) compared to only alkali treated fibre composites. The SEM fracture images and the X-ray µCT damage analysis revealed different impact damage modes, which supported the observed impact results. The obtained results from this investigation could be helpful for using short jute fibre composites in various load demanding applications where impact incidents are likely to be happened.

Topics
  • surface
  • polymer
  • scanning electron microscopy
  • tomography
  • crack
  • composite
  • lignin
  • alcohol
  • woven
  • impact response