People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feuchter, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Morphological structure and mechanical properties of a nucleated Polyoxymethylene (POM) homopolymer resin processed under conventional injection molding conditions
- 2024Impact Characteristics and Repair Approaches of Distinct Bio-Based Matrix Composites: A Comparative Analysiscitations
- 2024Effect of different weft-knitted structures on the mechanical performance of bio-based flexible compositescitations
- 2024Manufacturing bio-based fiber-reinforced polymer composites: Process performance in RTM and VARI processescitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2023Tensile properties of flexible composites with knitted reinforcements from various yarn materialscitations
- 2023Investigation of the Mechanical Properties of Sandwich Composite Panels Made with Recyclates and Flax Fiber/Bio-Based Epoxy Processed by Liquid Composite Moldingcitations
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Towards virtually optimized curing cycles for polymeric encapsulations in microelectronicscitations
- 2022Injection Molding Simulation of Polyoxymethylene Using Crystallization Kinetics Data and Comparison with the Experimental Processcitations
- 2021Thermal and Moisture Dependent Material Characterization and Modeling of Glass Fibre Reinforced Epoxy Laminates
- 2021Prediction of Curing Induced Residual Stresses in Polymeric Encapsulation Materials for Microelectronicscitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2018Influence of environmental factors like temperature and humidity on MEMS packaging materials.citations
Places of action
Organizations | Location | People |
---|
article
Effect of different weft-knitted structures on the mechanical performance of bio-based flexible composites
Abstract
<p>This work investigates composites from renewable resources that exhibit high flexibility. The effect of three different weft-knitted structures on the tensile properties, flexural properties, tear resistance and puncture impact properties is analyzed in combination with two different flexible matrix materials. Furthermore, the potential of the knitted structures in flexible composites is compared to a woven fabric and comprehensively discussed. The tear resistance and the total absorbed energy in puncture impact tests were unaffected by the matrix material. Among the knitted structures, the highest tensile strength, tear resistance and impact properties were achieved with the interlock structure, whereas the double jersey with tuck stitch structure resulted in the lowest flexural modulus. However, a much higher tensile strength was achieved with the woven fabric, at the expense of a higher flexural modulus. Overall, knitted structures proved promising to be used in bio-based flexible composites for applications requiring high flexibility without the need for high tensile strength.</p>