People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castro, Oscar
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023A tunnelling crack density evolution model for FRP laminates subjected to cyclic multi-axial strain-controlled loadingcitations
- 2023Design of a composite sub-structural beam specimen for investigating tunneling cracks under cyclic loadingcitations
- 2023Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysiscitations
- 2022Propagation of tunnelling cracks in composite materials under strain and force-controlled cyclic loadingcitations
- 2021Optimized method for multi-axial fatigue testing of wind turbine bladescitations
- 2019Cruciform Specimen Designs for Planar Biaxial Fatigue Testing in Composites
- 2018Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminatescitations
- 2018Fatigue strength of composite wind turbine blade structures
- 2015Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools
Places of action
Organizations | Location | People |
---|
article
Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysis
Abstract
A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage.Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response.Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.