People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Samali, Bijan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Engineering and Life Cycle Assessment (LCA) of Sustainable Zeolite-Based Geopolymer Incorporating Blast Furnace Slagcitations
- 2023Bond degradation at environmentally exposed FRP-strengthened steel elementscitations
- 2022A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperaturescitations
- 2020Web crippling strength of cold-formed ferritic stainless steel unlipped channels with web openings
- 2020Cold-formed austenitic stainless steel channels with unfastened flanges subject to web crippling
- 2019Debonding detection in a carbon fibre reinforced concrete structure using guided wavescitations
- 2019Characterization of carbon fiber reinforced polymer strengthened concrete and gap detection with a piezoelectric-based sensory techniquecitations
- 2019Microchemistry and microstructure of sustainable mined zeolite-geopolymercitations
- 2016Non-contact inspection of construction materials using 3-axis multifunctional imaging system with microwave and laser sensing techniquescitations
- 2013Energy dissipation in self-compacting concrete with or without fibers in compression
Places of action
Organizations | Location | People |
---|
article
Bond degradation at environmentally exposed FRP-strengthened steel elements
Abstract
Due to several advantages that Fiber Reinforced Polymer (FRP) composites offer in comparison with other strengthening techniques for steel structures, they have attracted considerable interest over the past three decades. However, the efficiency of FRP-strengthening for structures was found to be highly dependent on the quality and durability of the adhesive bonding between FRP and steel surface. This paper presents a state-of-the art review on the bond degradation in FRP-steel joints under different environmental conditions. Topics reviewed in this paper comprise the effect of different environmental conditions and their combination on bond durability, synergic effect of combining environmental condition with mechanical load, and the recent developments in the numerical simulation of aged bond. The paper concludes with the research gaps and uncertainties for further investigations.