Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mittelhaus, Janina

  • Google
  • 1
  • 5
  • 26

Hamburg University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Fatigue and fatigue after impact behaviour of Thin- and Thick-Ply composites observed by computed tomography26citations

Places of action

Chart of shared publication
Kötter, Benedikt
1 / 5 shared
Körbelin, Johann
1 / 6 shared
Fiedler, Bodo
1 / 39 shared
Endres, Hans-Josef
1 / 15 shared
Bittner, Florian
1 / 13 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kötter, Benedikt
  • Körbelin, Johann
  • Fiedler, Bodo
  • Endres, Hans-Josef
  • Bittner, Florian
OrganizationsLocationPeople

article

Fatigue and fatigue after impact behaviour of Thin- and Thick-Ply composites observed by computed tomography

  • Kötter, Benedikt
  • Körbelin, Johann
  • Fiedler, Bodo
  • Endres, Hans-Josef
  • Bittner, Florian
  • Mittelhaus, Janina
Abstract

This study investigates the influence of load ratio and impact damage on the fatigue behaviour of high-performance carbon fibre reinforced polymers (CFRP) with areal fibre weights between 30 gsm and 360 gsm. For undamaged samples, the ultimate tensile and compressive strength, as well as the fatigue properties, are evaluated with regard to their layer thicknesses. The fatigue tests were performed under tension-tension (R=0.1), tension-compression (R=-0.5) and compression-compression (R=10) regime. The results are illustrated as a constant-life diagram, and a piecewise linear interpolation examines a first prediction. The results show that static and fatigue performance improves with decreasing layer thickness. Particularly under tension-compression loading, significant improvements are observed, due to the suppression of matrix cracks and delaminations with thinner layers. In addition, the effect of low-energy impact on the fatigue behaviour of Thin- and Thick-Ply laminates is investigated. The tests demonstrate that although the delamination area is larger, Thin-Ply laminates can sustain higher stresses and still reach the same number of load cycles in contrast to Thick-Ply laminates. Computed tomography measurements visualize 3-dimensional the damage progression after various cycles and prove that the Thin-Ply composites show no increase in the damaged area during fatigue. The interlaminar stress at the delamination is not sufficient for expansion. In contrast, in the case of thicker layers, the damage growths progressively throughout the whole sample with increasing number of cycles.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • tomography
  • crack
  • strength
  • fatigue
  • composite