People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Witek, Lukasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (42/42 displayed)
- 20233D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluationcitations
- 2023Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Modelcitations
- 2023Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. citations
- 2022Residual stress estimated by nanoindentation in pontics and abutments of veneered zirconia fixed dental prosthesescitations
- 2022Physiochemical and bactericidal activity evaluationcitations
- 2022Temporary materials used in prosthodonticscitations
- 2022Stability of fatigued and aged ZTA compared to 3Y-TZP and Al2O3 ceramic systemscitations
- 2021Three-Dimensionally-Printed Bioactive Ceramic Scaffoldscitations
- 2021Nanoscale physico-mechanical properties of an aging resistant ZTA compositecitations
- 2021Effect of supplemental acid-etching on the early stages of osseointegrationcitations
- 2021Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutmentscitations
- 2020Comparative analysis of elastomeric die materials for semidirect composite restorations.
- 2020Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally-Printed Bioceramic Scaffoldscitations
- 2020Comparative analysis of elastomeric die materials for semidirect composite restorations
- 2020Microstructural, mechanical, and optical characterization of an experimental aging-resistant zirconia-toughened alumina (ZTA) compositecitations
- 2020Assessing osseointegration of metallic implants with boronized surface treatmentcitations
- 2020Aging resistant ZTA composite for dental applicationscitations
- 2019Long-term outcomes of 3D-printed bioactive ceramic scaffolds for regeneration of the pediatric skeleton
- 2019Osteointegrative and microgeometric comparison between micro-blasted and alumina blasting/acid etching on grade II and V titanium alloys (Ti-6Al-4V)citations
- 2019Physical and chemical characterization of synthetic bone mineral ink for robocasting applications
- 2019Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bonecitations
- 2019Tissue-engineered alloplastic scaffolds for reconstruction of alveolar defectscitations
- 2019Comparative in vitro study of 3D robocasting scaffolds using beta tricalcium phosphate and synthetic bone mineral
- 2019Synergistic effects of implant macrogeometry and surface physicochemical modifications on osseointegrationcitations
- 2019Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffoldscitations
- 2019Nanomechanical and microstructural characterization of a zirconia-toughened alumina composite after agingcitations
- 2019Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturitycitations
- 2019Regeneration of a Pediatric Alveolar Cleft Model Using Three-Dimensionally Printed Bioceramic Scaffolds and Osteogenic Agentscitations
- 2018Form and functional repair of long bone using 3D-printed bioactive scaffoldscitations
- 2018Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defectscitations
- 2018Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defectscitations
- 2017Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffoldscitations
- 2017Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatmentcitations
- 2017Abstract 47. Dipyridamole-Containing 3D-Printed Bioactive Ceramic Scaffolds for the Treatment of Calvarial Defects
- 2015Geometrical versus Random beta-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behaviorcitations
- 2014The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materialscitations
- 2014The in vivo effect of P-15 coating on early osseointegrationcitations
- 2013MicroCT analysis of a retrieved root restored with a bonded fiber-reinforced composite dowelcitations
- 2012Physicochemical characterization and in vivo evaluation of amorphous and partially crystalline calcium phosphate coatings fabricated on Ti-6Al-4V implants by the plasma spray methodcitations
- 2012Abutment Design for Implant-Supported Indirect Composite Molar Crownscitations
- 2012Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogscitations
- 2011Additive CAD/CAM process for dental prosthesescitations
Places of action
Organizations | Location | People |
---|
article
Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment
Abstract
<p>Purpose Orthopedic and maxillofacial bone fractures are routinely treated by titanium internal fixation, which may be prone to exposure, infection or intolerance. Magnesium (Mg) and its alloys represent promising alternatives to produce biodegradable osteosynthesis devices, with biocompatibility and, specifically, hydrogen gas production during the degradation process, being the main drawback. Aim of this study is to test and compare biocompatibility, degradation rate and physiscochemical properties of two Mg-alloys to identify which one possesses the most suitable characteristics to be used as resorbable hardware in load-bearing fracture sites. Materials and methods As-cast (WE43) and T5 Mg-alloys were tested for biocompatibility, physical, mechanical and degradation properties. Microstructure was assessed by optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS); mechanical properties were tested utilizing quasi-static compression and failure analysis. Locoregional biocompatibility was tested by sub-periosteal implantation on the fronto-nasal region of large-animal model (sheep): regional immunoreaction and metal accumulation was analyzed by LA-ICP of tributary lymph-nodes, local reactions were analyzed through histological preparation including bone, implant and surrounding soft tissue. Results Mechanically, T5 alloy showed improvement in strength compared to the as-cast. Lymph-node Mg accumulation depicted no differences between control (no implant) and study animals. Both alloys showed good biocompatibility and osteogenesis-promoting properties. Conclusion This study demonstrated excellent biocompatibility and osteogenesis-promoting capabilities of the tested alloys, providing a platform for further studies to test them in a maxillofacial fracture setting. T-5 alloy displayed more stability and decreased degradation rate than the as-cast.</p>