Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carina, L. Gargalo

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Production of phosphate biofertilizers as a booster for the techno-economic and environmental performance of a first-generation sugarcane ethanol and sugar biorefinery1citations

Places of action

Chart of shared publication
Gernaey, Krist V.
1 / 12 shared
Farinas, Cristiane S.
1 / 1 shared
Elias, Andrew M.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Gernaey, Krist V.
  • Farinas, Cristiane S.
  • Elias, Andrew M.
OrganizationsLocationPeople

article

Production of phosphate biofertilizers as a booster for the techno-economic and environmental performance of a first-generation sugarcane ethanol and sugar biorefinery

  • Gernaey, Krist V.
  • Carina, L. Gargalo
  • Farinas, Cristiane S.
  • Elias, Andrew M.
Abstract

The intensive use of fertilizers and pesticides in agriculture has a significant economic and environmental impact worldwide. Biofertilizers (aka microbial inoculants) could be a potential alternative to decrease costs and the environmental footprint linked to the use of fertilizers while boosting productivity through biological processes. This work aimed to perform a techno-economic-environmental assessment of an industrial biofertilizer production facility integrated with a sugarcane ethanol biorefinery. To this end, systems engineering tools were employed concurrently with techno-economic-environmental analyses to assess the integration of the different processes and their feasibility. Three processes for biofertilizer production are proposed varying in terms of downstream processing and the use of single or double microorganisms. Our findings indicate that the integration of biofertilizer production can enhance the biorefinery's NPV by as much as 137% in the most favorable scenario and by a minimum of 69% in the most unfavorable scenario. Regarding environmental consequences, in general, all scenarios demonstrate an improvement over the base scenario. Global sensitivity analysis showed that the solid-state fermentation and composite formulation steps of the biofertilizer process have the most substantial influence on both economic and environmental outcomes. The uncertainty analysis further unveils that the scenarios without fungus separation exhibited greater resilience in the face of market volatility. The retro-techno-economic study defined the economically viable region. Ultimately, this study demonstrates that the integration of biofertilizers into an ethanol and sugar biorefinery is a more sustainable alternative than the isolated biorefinery regarding the environmental and techno-economic aspects of sustainability.

Topics
  • impedance spectroscopy
  • composite
  • fermentation