Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmad, A.

  • Google
  • 7
  • 32
  • 433

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Valorization of phosphogypsum as a thermal energy storage material for low temperature applications23citations
  • 2021Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells114citations
  • 2020Synthetic Bioplastic Film from Rice Husk Cellulose11citations
  • 2019Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk14citations
  • 2017Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes33citations
  • 2015Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate82citations
  • 2011Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease.156citations

Places of action

Chart of shared publication
Anagnostopoulos, Argyrios
1 / 6 shared
Gaidajis, G.
1 / 1 shared
Ding, Yulong
1 / 9 shared
Navarro, M. Elena
1 / 10 shared
Rahman, N. A.
1 / 1 shared
Mobarak, N. N.
1 / 1 shared
Hanifah, S. A.
2 / 2 shared
Suait, M. S.
1 / 1 shared
Ludin, N. A.
1 / 1 shared
Bella, F.
1 / 49 shared
Hayatun, Asriani
2 / 2 shared
Jannah, M.
2 / 2 shared
Taba, P.
2 / 2 shared
Chadijah, S.
1 / 1 shared
Noor, S. A. M.
1 / 1 shared
Macfarlane, Douglas
1 / 33 shared
Zhu, H.
1 / 9 shared
Yahya, M. Z. A.
1 / 2 shared
Mohamed, N. S.
1 / 1 shared
Forsyth, M.
1 / 8 shared
Su, N. C.
1 / 1 shared
Khoon, L. T.
1 / 1 shared
Radzir, N. N. M.
1 / 1 shared
Bella, Federico
1 / 45 shared
Hassan, N. H.
1 / 1 shared
Stockley, Robert
1 / 1 shared
Sapey, Elizabeth
1 / 2 shared
Insall, Rh
1 / 1 shared
Stockley, James
1 / 1 shared
Lord, Janet
1 / 2 shared
Bayley, D.
1 / 1 shared
Greenwood, Hannah
1 / 1 shared
Chart of publication period
2022
2021
2020
2019
2017
2015
2011

Co-Authors (by relevance)

  • Anagnostopoulos, Argyrios
  • Gaidajis, G.
  • Ding, Yulong
  • Navarro, M. Elena
  • Rahman, N. A.
  • Mobarak, N. N.
  • Hanifah, S. A.
  • Suait, M. S.
  • Ludin, N. A.
  • Bella, F.
  • Hayatun, Asriani
  • Jannah, M.
  • Taba, P.
  • Chadijah, S.
  • Noor, S. A. M.
  • Macfarlane, Douglas
  • Zhu, H.
  • Yahya, M. Z. A.
  • Mohamed, N. S.
  • Forsyth, M.
  • Su, N. C.
  • Khoon, L. T.
  • Radzir, N. N. M.
  • Bella, Federico
  • Hassan, N. H.
  • Stockley, Robert
  • Sapey, Elizabeth
  • Insall, Rh
  • Stockley, James
  • Lord, Janet
  • Bayley, D.
  • Greenwood, Hannah
OrganizationsLocationPeople

article

Valorization of phosphogypsum as a thermal energy storage material for low temperature applications

  • Anagnostopoulos, Argyrios
  • Gaidajis, G.
  • Ahmad, A.
  • Ding, Yulong
  • Navarro, M. Elena
Abstract

<p>Phoshpogypsum (PG) is an industrial byproduct of the fertilizer industry typically disposed in the sea, dams or dykes, which presents a significant environmental hazard due to elevated content in radioactive heavy metals. Only 15% of it is recycled, and to this end, a novel circular economy case is proposed. The PG is combined with a commercial-grade paraffin to fabricate composite phase change materials (CPCMs). No variation in latent heat and melting point are observed after 96 cycles (25 to 100 °C) denoting good thermal stability. Maximum latent heat is 75 J/g (60% paraffin content), while the optimal average specific heat capacity is 1.54 J/gK for the same paraffin content. The thermal conductivity is found to be up to 0.46 W/mK; 75% higher than pure paraffin. The maximum energy storage density is 237 MJ/m 3; only 14% lower than the pure paraffin. A lab scale TES layout of the PG based CPCMs is also investigated in ANSYS. The effect of the flow rate of the heat transfer fluid, in this case air, is evaluated. A maximum charge and discharge efficiency of 88.1% and 66.2% respectively, is achieved for flow rates of 5.5 and 22 L/min correspondingly.</p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • composite
  • thermal conductivity
  • heat capacity
  • specific heat