Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sheena, Husam

  • Google
  • 2
  • 6
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Influence of anti-ageing compounds on rheological properties of bitumen28citations
  • 2013Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocomposites23citations

Places of action

Chart of shared publication
Zhang, Yuqing
1 / 2 shared
Al-Malaika, Sahar
2 / 18 shared
Omairey, Eman
1 / 4 shared
Gao, Yangming
1 / 1 shared
Masarati, E.
1 / 2 shared
Fischer, D.
1 / 18 shared
Chart of publication period
2021
2013

Co-Authors (by relevance)

  • Zhang, Yuqing
  • Al-Malaika, Sahar
  • Omairey, Eman
  • Gao, Yangming
  • Masarati, E.
  • Fischer, D.
OrganizationsLocationPeople

article

Influence of anti-ageing compounds on rheological properties of bitumen

  • Zhang, Yuqing
  • Al-Malaika, Sahar
  • Omairey, Eman
  • Gao, Yangming
  • Sheena, Husam
Abstract

The aim of this study was to investigate the effects of different anti-ageing compounds (AACs) on the oxidative stability, rheological and mechanical properties of bitumen. Modified bitumen samples containing six different AAC combinations, with five samples containing Irganox acid (3,5-di-tert-butyl-4-hydoxyphenylpropionic acid), a hindered phenol polymer-based antioxidant, were fabricated and aged under different conditions using a Rolling Thin Film Oven (RTFO) as well as a Pressure Aging Vessel (PAV). The oxidative stabilising performance (anti-ageing) of the AACs was examined using Fourier Transform Infrared (FTIR) Spectroscopy. The effect of the AAC-modified bitumen on different rheological and mechanical properties was investigated - complex viscosity, linear viscoelastic (LVE) properties, fatigue and rutting - using a Dynamic Shear Rheometer (DSR). The results illustrated that all the AAC-combinations examined afforded good oxidative stability to the base bitumen, with outstanding anti-ageing performance achieved by formulations C, D, E and F (Irganox acid:NaMMT, Irganox acid:furfural without or with DLTDP or NaMMT). The rheological results showed that the AAC-modified bitumen samples displayed non-Newtonian characteristics associated with simple thermo-rheological materials. The AAC formulations A (DLTDP:furfural), D (Irganox acid:furfural) and F (DLTDP:Irganox acid:furfural) were shown to significantly strengthen the resistance of the bitumen samples to fatigue cracking. In contrast to Irganox acid:furfural combination, the addition of the NaMMT nanofiller to this mixture was found to enhance the rutting resistance of the aged bitumen samples.

Topics
  • compound
  • polymer
  • thin film
  • fatigue
  • viscosity
  • aging
  • aging
  • spectroscopy