Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gonzalez, Julieta

  • Google
  • 3
  • 3
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Compressibility, structure and leaching assessments of an alluvium stabilised with a sewage treatment sludge biochar-slag bindercitations
  • 2021Mechanical strength characterisation of alluvium stabilised with sewage sludge derived biochar and blast furnace slag.citations
  • 2021Sewage treatment sludge biochar activated blast furnace slag as a low carbon binder for soft soil stabilisation45citations

Places of action

Chart of shared publication
Ennis, Christopher
2 / 6 shared
Sargent, Paul
3 / 9 shared
Ennis, Chris
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Ennis, Christopher
  • Sargent, Paul
  • Ennis, Chris
OrganizationsLocationPeople

article

Sewage treatment sludge biochar activated blast furnace slag as a low carbon binder for soft soil stabilisation

  • Ennis, Christopher
  • Gonzalez, Julieta
  • Sargent, Paul
Abstract

Portland cement forms the basis of most binders used in deep dry soil mixing, significantly improving the shear strength and compressibility properties of soils. However, due to the high environmental and socio-economic impacts of cement production, there is great interest in developing alternative low-carbon binders for soil stabilisation. One of the most desirable routes involves the use of industrial by-products, such as ground granulated blast furnace slag, whose pozzolanic properties require activation by alkali agents. This paper assesses the feasibility of using sewage treatment sludge biochar as a low-carbon 100% waste-based alternative to traditional alkali agents. Two biochar:slag ratios (0.5:0.5 and 0.67:0.33) were added to an artificial soil at dosages of 7.5 and 10% by dry weight and cured for up to 56 days. The engineering performance of these stabilised soil mixtures was assessed by performing a suite of compressive strength, pH, water content, mineralogical and microstructural analyses. Results were compared with those of untreated and CEM-II stabilised alluvium, along with data published in the literature. Biochar was observed to successfully activate the pozzolanic properties of the slag, whereby the studied mixtures resulted in 28-day strengths that met European soil stabilisation standards requirements. Binder mixtures with higher biochar concentrations achieved greater strengths. The best performing mixture had a biochar-slag ratio of 0.67:0.33 and dosage of 10%, which produced strengths up to 1243 kPa. This study suggests that the biochar-slag binder has encouraging prospects for replacing Portland cements in soil stabilisation, reducing the carbon footprint of the construction sector and improving the circular economy.

Topics
  • impedance spectroscopy
  • Carbon
  • strength
  • cement
  • activation