Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bunjaku, Ali

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Simulation-based life cycle assessment of ferrochrome smelting technologies to determine environmental impacts17citations

Places of action

Chart of shared publication
Hamuyuni, Joseph
1 / 5 shared
Lindgren, Mari
1 / 14 shared
Pajula, Tiina
1 / 1 shared
Mäkelä, Pasi
1 / 2 shared
Vatanen, Saija
1 / 3 shared
Johto, Hannu
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hamuyuni, Joseph
  • Lindgren, Mari
  • Pajula, Tiina
  • Mäkelä, Pasi
  • Vatanen, Saija
  • Johto, Hannu
OrganizationsLocationPeople

article

Simulation-based life cycle assessment of ferrochrome smelting technologies to determine environmental impacts

  • Hamuyuni, Joseph
  • Lindgren, Mari
  • Pajula, Tiina
  • Mäkelä, Pasi
  • Bunjaku, Ali
  • Vatanen, Saija
  • Johto, Hannu
Abstract

Decarbonization of metal production is currently a unique challenge for the industry. To gain insights, environmental impacts of ferrochrome smelting technologies were estimated using simulation-based life cycle assessment. Two leading technologies: (1) Steel Belt Sintering-Submerged Electric Arc Furnace (SBS-SAF), and (2) Rotary Kiln-Submerged Electric Arc Furnace (RK-SAF) were investigated. Four environmental impact categories: climate change, acidification, particulate matter, and resource use (minerals and metals), were considered. Results showed that GHG emissions for producing high carbon ferrochrome vary to a greater extent depending on location of processing plant because of differences in electricity emission factors. For example, South African energy grid generates more GHG emission than Finnish energy grid. Furthermore, though prereduction reduced SAF energy consumption, it did not necessarily result in reduced net GHG emissions due to high coal consumption of RK. Acidification and particulate matter were higher when using RK-SAF technology. Ferrochrome production generally had low impact on resource use.

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • simulation
  • steel
  • sintering