Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Trethowan, Richard

  • Google
  • 1
  • 9
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Indian mustard bioproducts dry-purification with natural adsorbents - A biorefinery for a green circular economy13citations

Places of action

Chart of shared publication
Rapp, Graeme
1 / 1 shared
Garcia-Montoto, Victor
1 / 1 shared
Mozet, Kevin
1 / 4 shared
Bouyssière, Brice
1 / 4 shared
Montoya, Alejandro
1 / 1 shared
Pratt, Peter
1 / 1 shared
Portha, Jean-François
1 / 1 shared
Coniglio, Lucie
1 / 1 shared
Thiebaud-Roux, Sophie
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Rapp, Graeme
  • Garcia-Montoto, Victor
  • Mozet, Kevin
  • Bouyssière, Brice
  • Montoya, Alejandro
  • Pratt, Peter
  • Portha, Jean-François
  • Coniglio, Lucie
  • Thiebaud-Roux, Sophie
OrganizationsLocationPeople

article

Indian mustard bioproducts dry-purification with natural adsorbents - A biorefinery for a green circular economy

  • Rapp, Graeme
  • Garcia-Montoto, Victor
  • Mozet, Kevin
  • Bouyssière, Brice
  • Montoya, Alejandro
  • Trethowan, Richard
  • Pratt, Peter
  • Portha, Jean-François
  • Coniglio, Lucie
  • Thiebaud-Roux, Sophie
Abstract

Processes based on homogeneous catalysts are the most widely used for industrial production of fatty acid derivatives, despite catalyst loss in aqueous effluents during the wet-purification stage. In this work, dry-purification of the crude bioproducts; ethyl biodiesel and biolubricants, derived from Indian mustard was conducted using various natural mineral (clay) and organic (plant issue) adsorbents to evaluate operating conditions including temperature, contact time and number of treatment cycles and to define the optimal procedure. Adsorbent characterization was determined by average particle size assessed using laser granulometry, morphology and elemental chemical composition measured by scanning electron spectroscopy with microanalysis using energy dispersive X-ray spectroscopy, chemical structure determination based on Fourier Transform InfraRed spectroscopy and porosity and specific area assessed using carbon dioxide or nitrogen adsorption. The quality of the biofuel and biolubricants, before and after dry-purification on the above adsorbents, was evaluated using different methods including Karl Fischer titration, gas chromatography with a flame ionization detector and inductively coupled plasma-atomic emission spectroscopy. Montmorillonite clay and finely ground Indian mustard stems (particle size of 100–710 μm) without further pyrolysis or carbonization treatment were found to be the best adsorbents. Combined with the selected dry-purification procedure (35–45 °C, 20 min, single treatment cycle), most impurities including residual glycerides, free glycerin, water, catalysts and metals were removed from the resultant ethyl biodiesel thus meeting the basic biofuel specifications of acid value, color, density, viscosity, flash point, pour point, cloud point, cold filter plugging point, higher heating value, and oxidation stability. Further purification of biolubricants was required using bubble-washing with citric acid and vacuum distillation to obtain a product with acceptable density, viscosity and color. This work highlights the potential of a biorefinery system focused on Indian mustard contributing to a green circular economy, that would benefit both farmers and consumers in the respect of environment; farmers would gain in energy security and flexibility by biofuel, biolubricant and other bioproducts on-farm production, while ensuring healthy food security and offering job opportunities, the whole with reduced chemical and energy inputs and minimized waste effluents.

Topics
  • density
  • pyrolysis
  • morphology
  • mineral
  • Carbon
  • Nitrogen
  • viscosity
  • chemical composition
  • porosity
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • atomic emission spectroscopy
  • X-ray spectroscopy
  • washing
  • titration
  • electron spectroscopy
  • vacuum distillation