Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Damgaard, Anders

  • Google
  • 3
  • 6
  • 166

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products83citations
  • 2020Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products83citations
  • 2011Recycling of Glasscitations

Places of action

Chart of shared publication
Van Zomeren, André
1 / 2 shared
Comans, Rob N. J.
2 / 4 shared
Pels, Jan R.
2 / 3 shared
Tosti, Lorenzo
2 / 4 shared
Zomeren, André Van
1 / 1 shared
Christensen, Thomas Højlund
1 / 6 shared
Chart of publication period
2020
2011

Co-Authors (by relevance)

  • Van Zomeren, André
  • Comans, Rob N. J.
  • Pels, Jan R.
  • Tosti, Lorenzo
  • Zomeren, André Van
  • Christensen, Thomas Højlund
OrganizationsLocationPeople

article

Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products

  • Damgaard, Anders
  • Comans, Rob N. J.
  • Zomeren, André Van
  • Pels, Jan R.
  • Tosti, Lorenzo
Abstract

<p>In this study, we performed a life cycle assessment of the reuse of biomass fly ash as secondary cementitious material in cement mortars as alternative to a reference landfill scenario of the ash. Since biomass ash does contain enhanced levels of elements that are of potential concern for the environment or human exposure, the performed Life Cycle Assessment (LCA), in addition to CO<sub>2</sub> savings, takes into account the impact on all non-toxic categories and human toxicity/carcinogenicity during service and second life stages. Results showed that utilization of biomass ash in cement is preferable over landfill for all the non-toxic categories at both cement replacements rates of 20 and 40 wt%. In detail, the reduction of CO<sub>2</sub>-eq. was found to be between 11 and 26% when biomass ash was blended with cement instead of being landfilled. The hydraulic activity of biomass ashes was found to be a critical parameter in this scenario, as it had impacts on the global warming potential (and all other investigated non-toxic categories), and it is therefore crucial to consider the uncertainty related to this aspect in LCA studies. Cement containing biomass ash performed better, on average, when compared with the reference landfill scenario regarding the impact to human toxicity (carcinogenic) category. Contrary, only the utilization in cement for one particular ash type (from paper sludge combustion) showed a better performance than the reference scenario for the ecotoxicity (ET) category. The impact to human toxicity carcinogenic (HTc) and ecotoxicity (ET) was mainly dominated by the leaching of Cr from landfilling of pure biomass fly ash (reference scenario) and the leaching of Ba, Cu, Cr (VI) and Zn from the second life stage of cement products (i.e., reuse of the crushed cement after service life in road base applications). However, this impact was acceptable when emissions are compared to existing EU landfill directive and regulations on the reuse of secondary materials in construction works. The novel LCA approach performed in this study, which includes impacts of leached contaminants during both the service and second life phase of cement, has shown that the reuse of biomass ash as secondary cementitious materials has a beneficial effect on the majority of the impact categories, with no unacceptable leaching risks.</p>

Topics
  • impedance spectroscopy
  • phase
  • cement
  • combustion
  • leaching
  • toxicity