People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roberts, Jennifer
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023The role of hydrogen in the decarbonisation of the steel industry
- 2021Is the University of Strathclyde's Combined Heat and Power (CHP) District Energy Scheme compatible with its carbon reduction targets? A Life Cycle Emissions Assessment of the Strathclyde's Energy Centre and Implications for its Expansion
- 2018Can Portland cement be replaced by low-carbon alternative materials? A study on thermal properties and carbon emissions of innovative cementscitations
Places of action
Organizations | Location | People |
---|
article
Can Portland cement be replaced by low-carbon alternative materials? A study on thermal properties and carbon emissions of innovative cements
Abstract
One approach to decarbonising the cement and construction industry is to replace ordinary Portland cement (OPC) with lower carbon alternatives that have suitable properties. We show that seven innovative cementitious binders comprised of metakaolin, silica fume and nano-silica have improved thermal performance compared with OPC and we calculate the full CO<sub>2</sub> emissions associated with manufacture and transport of each binder for the first time. Due to their high porosity, the thermal conductivity of the novel cements is 58–90% lower than OPC, and we show that a thin layer (20 mm), up to 80% lower than standard insulating materials, is enough to bring energy emissions in domestic construction into line with 2013 Building Regulations. Carbon emissions in domestic construction can be reduced by 20–50% and these cementitious binders are able to be recycled, unlike traditional insulation materials.