People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luković, Mladena
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2024Structural behaviour of reinforced concrete beams with self-healing cover zone as lost formworkcitations
- 2023Long-Term Mechanical and Durability Behaviour of Two Alkali-Activated Types of Concrete
- 2023Notched Beam Test for SHCC-Concrete Interface
- 2023Strengthening of Reinforced Concrete Beams with Ultra-high Performance Fiber-Reinforced Concrete in Shearcitations
- 2023Contribution of strain-hardening cementitious composites (SHCC) to shear resistance in hybrid reinforced concrete beams
- 2023Strain Hardening Cementitious Composite in Reinforced Concrete Cover Zone for Crack Width Control
- 2023Shear behaviour of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete (UHPFRC)citations
- 2023Multiscale analysis of long-term mechanical and durability behaviour of two alkali-activated slag-based types of concretecitations
- 2023Structural performance of reinforced concrete beams with self-healing cover zonecitations
- 2023The role of eigen-stresses on apparent strength and stiffness of normal, high strength, and ultra-high performance fibre reinforced concretecitations
- 2022Quantification of Concrete-Concrete Interface Strength – A Review
- 2022Strengthening of concrete structures with ultra high performance fiber reinforced concrete (UHPFRC)citations
- 2022Experimental and numerical investigation on the role of interface for crack-width control of hybrid SHCC concrete beamscitations
- 2021Static and dynamic testing of delamination in hybrid SHCC/concrete beamscitations
- 2020Cementitious cellular composites with auxetic behaviorcitations
- 2020Scheurvorming in jong beton
- 2020Tunable mechanical behavior of auxetic cementitious cellular composites (CCCs)citations
- 2020Effect Of Interface Treatment On The Cracking Behaviour Of Hybrid SHCC (Strain Hardening Cementitious Composite) Concrete Beams
- 2019Strain-Hardening Cementitious Composite (SHCC) For Durable Concrete Repair
- 2019Strain hardening cementitious composite (SHCC) for crack width control in reinforced concrete beams
- 2018Mechanical properties of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2018Strain hardening cementitious composite (SHCC) layer for the crack width control in reinforced concrete beam
- 2018Brittleness of high-strength lightweight aggregate concrete
- 2018Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastescitations
- 2018Development and application of an environmentally friendly ductile alkali-activated compositecitations
- 2017Development of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Moisture movement in cement-based repair systems monitored by X-ray absorption
- 2017Moisture movement in cement-based repair systems monitored by X-ray absorption
- 2017Failure modes in concrete repair systems due to ongoing corrosioncitations
- 2017Failure Modes in Concrete Repair Systems due to Ongoing Corrosioncitations
- 2016Interactie beton en reparatiemiddel (1)
- 2016Towards slender, innovative concrete structures for replacement of existing viaducts
- 2016A 3D lattice modelling study of drying shrinkage damage in concrete repair systemscitations
- 2016Cracking of SHCC due to reinforcement corrosioncitations
- 2016A comparison between ultra-high-strength and conventional high-strength fastener steelscitations
- 2016Interactie beton en reparatiemiddel (2)
- 2015Using nano-indentation and microscopy to obtain mechanical properties
- 2014Modeling of concrete cover cracking due to reinforcement corrosion
- 2014Decorative application of strain-hardening cementitious composites
- 2014A modelling study of drying shrinkage damage in concrete repair systems
- 2014SHCC3: Strain Hardening Cementitious Composites
- 2014Damage induced by continued corrosion in concrete repair systems
- 2013Lattice modeling of cover cracking due to reinforcement corrosion
- 2013Micromechanical study of the interface properties of concrete repair systems
Places of action
Organizations | Location | People |
---|
article
Development and application of an environmentally friendly ductile alkali-activated composite
Abstract
<p>This paper presents a development of a ductile alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) based composite as an environmentally friendly material for structural concrete application. For this purpose, polyvinyl alcohol (PVA) fibres and sand aggregate were combined with alkali-activated paste. Workability, setting time, mechanical properties and failure mode of PVA fibres in the mixture were studied by slump test, Vicat needle test, flexural and compression tests, and Scanning Electron Microscopy (SEM) imaging, respectively. Although the mixture sets in a short period of time (less than 30 min), the workability was good and the developed fibre reinforced composite was used for a large scale application in a canoe. Casting a large volume (45 l compared to 3 l, as initially designed) did not affect the workability and the setting time of the mixture. Mechanical properties of specimens coming from “small” (3 l) and “large” (45 l) batches were tested at different ages (up to 120 days) and compared. It was shown that their flexural and compressive strength are similar, i.e. not affected by the upscaling. Furthermore, it was shown that the mixture with PVA fibres exhibits deflection hardening behaviour even with aggregate particles as large as 4 mm, although single crack localization led to failure. The SEM images of fractured surfaces indicated that combined fibre pull-out and fibre rupture occurred, with the latter one causing the final failure. The developed mixture, additionally reinforced with the plastic fiberglass mesh, was used in the 5.8 m long and 16 mm thick canoe for the student competition, which for the very first time, was constructed without the use of Ordinary Portland cement (OPC). The upscaling was successful and the results show the potential of fibre-reinforced alkali-activated FA and GBFS composite to be used as a durable and resistant material suitable for the structural application in thin shell elements, exemplified by the canoe. Such an application and a low risk project was suitable to gain the necessary experience and confidence with this innovative, “concrete like” material for which no codes or regulations are available. Furthermore, similar applications are the first step for larger scale structural applications, like structural elements in the building industry, bridges and other civil engineering structures.</p>