People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heath, Andrew
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2023Insights into the piezoceramic electromechanical impedance response for monitoring cement mortars during water saturation curingcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites:Healing evaluation of early and later-age crackscitations
- 2022Effect of fibre loading on the microstructural, electrical, and mechanical properties of carbon fibre incorporated smart cement-based compositescitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious compositescitations
- 2020Compressive Strength of Novel Alkali-Activated Stabilized Earth Materials Incorporating Solid Wastescitations
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2017Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formationcitations
- 2016Investigation of the Recycling of Geopolymer Cement wastes as Fine Aggregates in Mortar Mixes
- 2016Chemical aspects related to using recycled geopolymers as an aggregate
- 2016Recycling of fly ash-slag Geopolymer binder in mortar mixes
- 2015The environmental credentials of hydraulic lime-pozzolan concretescitations
- 2015Structural and durability properties of hydraulic lime-pozzolan concretescitations
- 2015The environmental credentials of lime-pozzolan concretescitations
- 2014Numerical analysis of triplet shear test on brickwork masonrycitations
- 2013Laboratory scale testing of extruded earth masonry unitscitations
- 2013The potential for using geopolymer concrete in the UKcitations
- 2012The feasibility and potential of modern hydraulic lime concretes
- 2012Drystone retaining walls: ductile engineering structures with tensile strengthcitations
- 2009The compressive strength of modern earth masonry
- 2009The compressive strength of modern earth masonry
- 2009Compressive strength of extruded unfired clay masonry unitscitations
- 2001Quantifying Longitudinal, Corner and Transverse Cracking in Jointed Concrete Pavements
- 2000Top-down cracking of rigid pavements constructed with fast-setting hydraulic cement concrete
Places of action
Organizations | Location | People |
---|
article
The environmental credentials of hydraulic lime-pozzolan concretes
Abstract
This research considers the compressive strength, embodied CO2, embodied energy and binder intensity of hydraulic lime-pozzolan concretes, in comparison with those of Portland-cement based concretes of equivalent 28-day compressive strength. Production of a lime-pozzolan concrete with a 28-day cube strength of approximately 50 MPa and an elastic modulus of 20GPa has demonstrated the feasibility of producing modern, structural grade hydraulic lime-pozzolan concretes. Furthermore, construction and testing of<br/>two reinforced lime-pozzolan concrete beams has demonstrated the possibility of producing structural elements with a finished appearance and flexural behaviour similar to Portland cement concrete. This paper reflects on the value of this new material’s technological progress in the context of the industry wide search for low carbon cements. Results of the research reported in this paper demonstrate that the use of aluminosilicate byproducts,<br/>specifically ground granulated blastfurnace slag and silica fume, in combination<br/>with naturally hydraulic lime can realise savings in environmental impact; but that the savings are both future-orientated and highly dependent on the boundaries of the analysis. When considering only the secondary impacts of ground granulated blastfurnace slag and silica fume production, a ternary combination was observed to result in a lime-pozzolan concrete<br/>with a 28-day cube strength of 33MPa and an embodied-CO2 of 95 kgCO2/m3,<br/>64% lower than a CEMI, and 41% lower than a CEMIII/A concrete of equivalent strength. Both mass and economic allocation procedures were, however, shown to have a very detrimental effect on the environmental credentials of silica fume and thus also on hydraulic lime-concretes containing this pozzolanic addition. It is recognised that technical performance alone cannot be used to assess or compare the merits of any new material. This paper focus on the production, environmental impact and long-term availability of individual constituents of this novel binder, with a view to addressing important questions about the viability and desirability of re-producing this novel<br/>cementitious system in a commercial setting. Such information is acknowledged to be critical in the dialogue about the potential adoption and development of this emerging binder technology.