People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miranda, Rm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Evaluation of the amount of nanoparticles emitted in LASER additive manufacture/weldingcitations
- 2017Experimental characterization of nanoparticles emissions during Laser Shock Processing of AA6061, AISI304 and Ti6Al4V
- 2017Determination of "safe" and "critical" nanoparticles exposure to welders in a workshopcitations
- 2015Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Toolcitations
- 2014The effect of metal transfer modes and shielding gas composition on the emission of ultrafine particles in MAG steel weldingcitations
- 2014EMISSION OF NANOPARTICLES DURING FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYScitations
- 2014Characterization of airborne particles generated from metal active gas welding processcitations
- 2012Comparison of deposited surface area of airborne ultrafine particles generated from two welding processescitations
- 2006Fume emissions during gas metal arc weldingcitations
- 2005Analysis of welding fumes: A short note on the comparison between two sampling techniquescitations
Places of action
Organizations | Location | People |
---|
article
Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Tool
Abstract
This paper describes the use of a Control Banding Tool to assess and further control of exposure of nanoparticles emitted during welding operations. The tool was applied to Metal Active Gas (MAG) arc welding of mild and stainless steel, providing semi-quantitative data on the process, so that protection measures could be derived, e.g. exhaust gas ventilation by hoods, local ventilation devices and containment measures. This tool is quite useful to compare and evaluate the characteristics of arc welding procedures so that more eco-friendly processes could be preferred over the more potentially noxious ones.