People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fytas, George
Max Planck Institute for Polymer Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluidscitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Optomechanic Coupling in Ag Polymer Nanocomposite Filmscitations
- 2021Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocompositescitations
- 2020Harnessing polymer grafting to control the shape of plasmonic nanoparticlescitations
- 2020Ultrathin polydopamine films with phospholipid nanodiscs containing a glycophorin a domaincitations
- 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carrierscitations
- 2020Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domaincitations
- 2018Propagation of elastic waves in a one-dimensional high aspect ratio nanoridge phononic crystal phononic crystalcitations
- 2018Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction rangecitations
- 2018Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Direct observation of polymer surface mobility via nanoparticle vibrationscitations
- 2018Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystalcitations
- 2018Well-defined metal-polymer nanocomposites : the interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobilitycitations
- 2014Surface asymmetry of coated spherical nanoparticlescitations
- 2011Resonance enhanced dynamic light scatteringcitations
Places of action
Organizations | Location | People |
---|
article
Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluids
Abstract
HypothesisPolymer particles self-assembled into colloidal crystals have exciting applications in photonics, phononics, templates for nanolithography, and coatings. Cold soldering utilizing polymer plasticization by supercritical fluids enables a novel, low-cost, low-effort, chemical-free means for uniform mechanical strengthening of fragile polymer colloidal crystals at moderate temperatures. Here, we aim to elucidate the role of particle size and gas-specific response for the most efficient soldering, exploring the full potential of this method.ExperimentsWe investigate the elastic properties of polystyrene colloidal crystals made of nanoparticles with different diameters (143 to 830 nm) upon treatment with supercritical Ar and He at room temperature. By employing Brillouin light scattering, we quantify the effect of nanoparticle size on the strengthening of interparticle contacts, evaluating the permanent change in the effective elastic modulus upon cold soldering.FindingsThe relative change in the effective elastic modulus reveals nonmonotonic dependence on the particle size with the most efficient soldering for mid-sized nanoparticles (about 610 nm diameter). We attribute this behavior to the crucial role of intrinsic fabrication impurities, which reduces the nanoparticles’ free surface exposed to plasticization by supercritical fluids. Supercritical Ar, a good solvent for polystyrene, enabled effective soldering of nanoparticles, whereas high-pressure He treatment is entirely reversible.