Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gao, Ping

  • Google
  • 1
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Surfactant-laden bubble dynamics under porous polymer films.15citations

Places of action

Chart of shared publication
Fuller, Gerald G.
1 / 8 shared
Zawala, Jan
1 / 1 shared
Li, Jin
1 / 8 shared
Hristov, Petar
1 / 1 shared
Kannan, Aadithya
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Fuller, Gerald G.
  • Zawala, Jan
  • Li, Jin
  • Hristov, Petar
  • Kannan, Aadithya
OrganizationsLocationPeople

article

Surfactant-laden bubble dynamics under porous polymer films.

  • Fuller, Gerald G.
  • Zawala, Jan
  • Gao, Ping
  • Li, Jin
  • Hristov, Petar
  • Kannan, Aadithya
Abstract

The dynamics of air bubbles spreading on the underside of solid substrates is an important scientific problem with numerous applications. This work explores the spreading of bubbles against an ultra-thin, porous ultra-high-molecular-weight polyethylene (UHMWPE) film. This polymer film can be used in applications where a solid-liquid-gas interface is involved, like froth flotation for mineral processing, underwater methane capture, to prevent foaming in bioreactors, and in degassing in microfluidics. When an air bubble is released underneath such a film, the bubble bounces against the film, makes contact after the liquid film dewets, spreads against the film and shrinks in size as the gas within the bubble permeates through the pores of the film. In our work, these events were recorded using a high-speed camera. The effect of different surface-active species like surfactants, which exhibit interfacial mobility and proteins, which form a viscoelastic interfacial network, was also studied. The adsorption of these surface-active molecules led to profound differences in the interaction of the bubbles and their ultimate removal through the film. Importantly, the permeation flux of the bubbles was lower in the presence of these molecules, affected in part by a lower capillary driving force and also because of the decreased film permeability. This ultra-thin film offers a high permeation flux, which makes it a promising candidate for the aforementioned applications. Furthermore, the effect of surface-active species such as surfactants and proteins encountered in these environments is elucidated.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • mineral
  • surface
  • polymer
  • mobility
  • thin film
  • permeability
  • degassing
  • surfactant