Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gumerov, Rustam A.

  • Google
  • 1
  • 8
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Amphiphilic PVCL/TBCHA microgels23citations

Places of action

Chart of shared publication
Gau, Elisabeth
1 / 1 shared
Potemkin, Igor I.
1 / 2 shared
Wolter, Nadja A.
1 / 1 shared
Melle, Andrea
1 / 1 shared
Xu, Wenjing
1 / 1 shared
Sorokina, Anastasia S.
1 / 1 shared
Pich, Andrij
1 / 19 shared
Filippov, Sergei A.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gau, Elisabeth
  • Potemkin, Igor I.
  • Wolter, Nadja A.
  • Melle, Andrea
  • Xu, Wenjing
  • Sorokina, Anastasia S.
  • Pich, Andrij
  • Filippov, Sergei A.
OrganizationsLocationPeople

article

Amphiphilic PVCL/TBCHA microgels

  • Gau, Elisabeth
  • Gumerov, Rustam A.
  • Potemkin, Igor I.
  • Wolter, Nadja A.
  • Melle, Andrea
  • Xu, Wenjing
  • Sorokina, Anastasia S.
  • Pich, Andrij
  • Filippov, Sergei A.
Abstract

<p>Thermoresponsive copolymer microgels based on the biocompatible monomer N-vinylcaprolactam (VCL) and the hydrophobic comonomer 4-tert-butylcyclohexylacrylate (TBCHA) with highly tunable comonomers ratio were for the first time synthesized by miniemulsion polymerization. Their physical properties in aqueous solution and at the solid interface were characterized using dynamic light scattering (DLS), atomic force microscopy (AFM) and dissipative particle dynamics (DPD) simulations. The results show a significant decrease of the swelling rate of the obtained microgels with an increase of the amount of the hydrophobic comonomer. In the case when the fraction of TBCHA is equal or higher than the fraction of VCL, the microgels become almost insensitive to the temperature changes, and the amount of water inside the microgels appeared to be diminishingly small. In the opposite case, if the VCL fraction is major, the copolymer microgels preserve their softness and deformability while being adsorbed onto a solid surface. At the same time, all samples have shown a good colloidal stability and a low polydispersity in size. Thus, the presented polymerization technique is applicable for the fabrication of microgels using hydrophobic monomers, which are not accessible by conventional precipitation polymerization. We demonstrate that the mechanical properties and the temperature-responsiveness of the copolymer microgels can be precisely adjusted by the content of the hydrophobic comonomer. (C) 2020 Elsevier Inc. All rights reserved.</p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • atomic force microscopy
  • precipitation
  • copolymer
  • polydispersity
  • dynamic light scattering
  • dissipative particle dynamics