People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Snow, Tim
Diamond Light Source
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2019An introduction to classical molecular dynamics simulation for experimental scattering userscitations
- 2016Structure of lipid multilayerscitations
- 2016Structure of lipid multilayers:Via drop casting of aqueous liposome dispersionscitations
Places of action
Organizations | Location | People |
---|
article
Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interface
Abstract
Understanding the structure of polymer/surfactant mixtures at the air-water interface is of fundamental importance and also of relevance to a variety of practical applications. Here, the complexation between a neutral ’tardigrade’ comb co-polymer (consisting of a hydrophilic polyethylene glycol backbone with hydrophobic polyvinyl acetate grafts, PEG-g-PVAc) with an anionic surfactant (sodium dodecyl sulfate, SDS) at the air-water interface has been studied. Contrast-matched neutron reflectivity (NR) complemented by surface tension measurements allowed elucidation of the interfacial composition and structure of these mixed systems, as well as providing physical insights into the polymer/surfactant interactions at the air-water interface. For both polymer concentrations studied, below and above its critical aggregation concentration, cac, (0.2 cac and 2 cac, corresponding to 0.0002 wt% or 0.013 mM and 0.002 wt% or 0.13 mM respectively), we observed a synergistic cooperative behaviour at low surfactant concentrations with a 1–2 nm mixed interfacial layer; a competitive adsorption behaviour at higher surfactant concentrations was observed where the polymer was depleted from the air-water interface, with an overall interfacial layer thickness ~1.6 nm independent of the polymer concentration. The weakly associated polymer layer “hanging” proximally to the interface, however, played a role in enhancing foam stability, thus was relevant to the detergency efficacy in such polymer/surfactant mixtures in industrial formulations.