Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tamanna, Tasnuva

  • Google
  • 1
  • 8
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Tunable morphological changes of asymmetric titanium nanosheets with bactericidal properties62citations

Places of action

Chart of shared publication
Baulin, Vladimir A.
1 / 1 shared
Joudkazis, Saulius
1 / 1 shared
Thissen, Helmut
1 / 9 shared
Linklater, Denver P.
1 / 2 shared
Wandiyanto, Jason V.
1 / 2 shared
Kobaisi, Mohammad Al
1 / 2 shared
Ivanova, Elena P.
1 / 9 shared
Crawford, Russell J.
1 / 8 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Baulin, Vladimir A.
  • Joudkazis, Saulius
  • Thissen, Helmut
  • Linklater, Denver P.
  • Wandiyanto, Jason V.
  • Kobaisi, Mohammad Al
  • Ivanova, Elena P.
  • Crawford, Russell J.
OrganizationsLocationPeople

article

Tunable morphological changes of asymmetric titanium nanosheets with bactericidal properties

  • Baulin, Vladimir A.
  • Joudkazis, Saulius
  • Tamanna, Tasnuva
  • Thissen, Helmut
  • Linklater, Denver P.
  • Wandiyanto, Jason V.
  • Kobaisi, Mohammad Al
  • Ivanova, Elena P.
  • Crawford, Russell J.
Abstract

<p>Hypothesis: Titanium and titanium alloys are often the most popular choice of material for the manufacture of medical implants; however, they remain susceptible to the risk of device-related infection caused by the presence of pathogenic bacteria. Hydrothermal etching of titanium surfaces, to produce random nanosheet topologies, has shown remarkable ability to inactivate pathogenic bacteria via a physical mechanism. We expect that systematic tuning of the nanosheet morphology by controlling fabrication parameters, such as etching time, will allow for optimisation of the surface pattern for superior antibacterial efficacy. Experiments: Using time-dependent hydrothermal processing of bulk titanium, we fabricated bactericidal nanosheets with variable nanoedge morphologies according to a function of etching time. A systematic study was performed to compare the bactericidal efficiency of nanostructured titanium surfaces produced at 0.5, 1, 2, 3, 4, 5, 6, 24 and 60 h of hydrothermal etching. Findings: Titanium surfaces hydrothermally treated for a period of 6 h were found to achieve maximal antibacterial efficiency of 99 ± 3% against Gram-negative Pseudomonas aeruginosa and 90 ± 9% against Gram-positive Staphylococcus aureus bacteria, two common human pathogens. These surfaces exhibited nanosheets with sharp edges of approximately 10 nm. The nanotopographies presented in this work exhibit the most efficient mechano-bactericidal activity against both Gram-negative and Gram-positive bacteria of any nanostructured titanium topography reported thus far.</p>

Topics
  • surface
  • experiment
  • etching
  • titanium
  • titanium alloy
  • random