Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iqbal, Zubair

  • Google
  • 1
  • 8
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability11citations

Places of action

Chart of shared publication
Shaheen, Ayesha
1 / 4 shared
Estrela, Pedro
1 / 17 shared
Khan, Waheed
1 / 1 shared
Asim, Tayyaba
1 / 1 shared
Xu, Jie
1 / 4 shared
Taj, Ayesha
1 / 3 shared
Bajwa, Sadia
1 / 1 shared
Mujahid, Adnan
1 / 7 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Shaheen, Ayesha
  • Estrela, Pedro
  • Khan, Waheed
  • Asim, Tayyaba
  • Xu, Jie
  • Taj, Ayesha
  • Bajwa, Sadia
  • Mujahid, Adnan
OrganizationsLocationPeople

article

In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability

  • Shaheen, Ayesha
  • Estrela, Pedro
  • Khan, Waheed
  • Iqbal, Zubair
  • Asim, Tayyaba
  • Xu, Jie
  • Taj, Ayesha
  • Bajwa, Sadia
  • Mujahid, Adnan
Abstract

The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules.

Topics
  • impedance spectroscopy
  • morphology
  • dispersion
  • surface
  • gold
  • amine
  • Fourier transform infrared spectroscopy