People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Estrela, Pedro
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021CRISPR-based electrochemical sensor for COVID-19 diagnostics
- 2021Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole bloodcitations
- 2020Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platformcitations
- 2019A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantificationcitations
- 2019Reduced Graphene-Oxide Transducers for Biosensing Applications Beyond the Debye-Screening Limitcitations
- 2019In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capabilitycitations
- 2019Multiplexed Electrochemical Platform for sepsis Diagnostics
- 2017Raman and Mössbauer spectroscopic studies of tungsten doped Ni–Zn nano ferritecitations
- 2017Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungicitations
- 2016Electrochemical biosensors and nanobiosensorscitations
- 2016Inexpensive and fast pathogenic bacteria screening using field-effect transistorscitations
- 2016Inexpensive and fast pathogenic bacteria screening using field-effect transistorscitations
- 2016Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigencitations
- 2011Room temperature processed ISFETs based on amorphous semiconductors oxides
- 2002High pressure transport study of non-Fermi liquid behaviour in U2Pt2In and U3Ni3Sn4
- 2002Pressure-induced recovery of the Fermi-liquid state in the non-Fermi liquid material U2Pt2Incitations
- 2000Possible non-Fermi-liquid behaviour in URh1/3Ni2/3Alcitations
Places of action
Organizations | Location | People |
---|
article
In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability
Abstract
The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules.