Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garnier, Gil

  • Google
  • 3
  • 10
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Transparent maltitol- cellulose nanocrystal film for high performance barrier3citations
  • 2016Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability17citations
  • 2016Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation49citations

Places of action

Chart of shared publication
Cainglet, Hans Estrella
1 / 1 shared
Batchelor, Warren
2 / 2 shared
Nasiri, Naghmeh
1 / 1 shared
Varanasi, Swambabu
1 / 1 shared
Husain, Fatema Abbas
1 / 1 shared
Raj, Praveena
2 / 2 shared
Li, Qing
1 / 7 shared
Blanco, Angeles
1 / 2 shared
Negro, Carlos
1 / 2 shared
Fuente, Elena De La
1 / 1 shared
Chart of publication period
2024
2016

Co-Authors (by relevance)

  • Cainglet, Hans Estrella
  • Batchelor, Warren
  • Nasiri, Naghmeh
  • Varanasi, Swambabu
  • Husain, Fatema Abbas
  • Raj, Praveena
  • Li, Qing
  • Blanco, Angeles
  • Negro, Carlos
  • Fuente, Elena De La
OrganizationsLocationPeople

article

Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation

  • Blanco, Angeles
  • Raj, Praveena
  • Negro, Carlos
  • Fuente, Elena De La
  • Garnier, Gil
Abstract

The effect of polyelectrolyte morphology, charge density, molecular weight and concentration on the adsorption and flocculation of Microfibrillated Cellulose (MFC) were investigated. Linear Cationic Polyacrylamide (CPAM) and Branched Polyethylenimine (PEI) of varying charge density and molecular weight were added at different dosages to MFC suspensions. The flocculation mechanisms were quanti-fied by measuring gel point by sedimentation, and floc size, strength and reflocculation ability through Focussed Beam Reflectance Measurements. Polymer adsorption was quantified through zeta potential<br/>and adsorption measurements using polyelectrolyte titration. The flocculation mechanism of MFC is shown to be dependent on polyelectrolyte morphology. The high molecular weight branched polymer, HPEI formed rigid bridges between the MFC fibres. HPEI had low coverage and negative zeta potential at the optimum flocculation dosage, forming flocs of high strength. After breaking of flocs, total reflocculation was achieved because the high rigidity of polymer did not allow reconformation or flattening of the polyelectrolyte adsorbed on MFC surface. The lower molecular weight branched polymer, LPEI (2 kDa)<br/>showed rapid total deflocculation, complete reflocculation and had maximum flocculation occurring at the point of zero charge. These characteristics correspond to a charge neutralisation mechanism. However, if the flocculation mechanism was purely charge neutralisation mechanism, the minimum gel point would be at the point of zero charge. Since this is not the case, this difference was attributed to the high polydispersity of the commercial LPEI used, allowing some bridges to be formed by the largest molecules, changing the minimum gel point. With the linear 80% charged 4 MDa CPAM, bridging mechanism dominates since maximum flocculation occurred at the minimum gel point, negative zeta potential and low coverage required for maximum flocculation. Reflocculation was not possible as the long linear polymer reconformed on the MFC surface under a flat conformation. Flocculation with the linear 50% charged 13 MDa CPAM happened by bridging with the minimum gel point and maximum flocculation corresponding to roughly half polyelectrolyte surface coverage on cellulose.

Topics
  • density
  • impedance spectroscopy
  • morphology
  • surface
  • polymer
  • strength
  • forming
  • molecular weight
  • cellulose
  • polydispersity
  • titration