Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haapanen, Janne

  • Google
  • 13
  • 45
  • 165

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2020Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wear8citations
  • 2019Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2019Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated paper4citations
  • 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2016Wetting hysteresis induced by temperature changes49citations
  • 2016TiO2 nanostructures for dye-sensitized solar cells (DSSCs) on a glass substratecitations
  • 2015Long-term corrosion protection by a thin nano-composite coating24citations
  • 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensation9citations
  • 2015Roll-to-roll coating by liquid flame spray nanoparticle deposition4citations
  • 2014Abrasion and Compression Resistance of Liquid-Flame-Spray-Deposited Functional Nanoparticle Coatings on Papercitations
  • 2013Compressibility of porous TiO₂ nanoparticle coating on paperboard11citations
  • 2013ToF-SIMS analysis of UV-switchable TiO₂-nanoparticle-coated paper surface35citations

Places of action

Chart of shared publication
Saarinen, Jarkko J.
3 / 6 shared
Suvanto, Mika
1 / 5 shared
Mäkelä, Jyrki Mikael
7 / 16 shared
Temerov, Filipp
1 / 4 shared
Ammosova, Lena
1 / 1 shared
Pudas, Marko
3 / 10 shared
Ronkainen, Helena
3 / 74 shared
Valden, Mika
3 / 37 shared
Mahlberg, Riitta
3 / 23 shared
Sorvali, Miika
4 / 8 shared
Vuori, Leena
3 / 6 shared
Honkanen, Mari
2 / 22 shared
Mäkelä, Jyrki
1 / 1 shared
Gunell, Marianne
1 / 1 shared
Toivakka, Martti
6 / 54 shared
Rosqvist, Emil
1 / 12 shared
Eerola, Erkki
1 / 1 shared
Brobbey, Kofi J.
1 / 1 shared
Peltonen, Jouko
1 / 24 shared
Makela, Jyrki M.
1 / 1 shared
Honkanen, Mari Hetti
2 / 59 shared
Heydari, Golrokh
1 / 3 shared
Tuominen, Mikko
6 / 9 shared
Moghaddam, Maziar Sedighi
1 / 1 shared
Claesson, Per M.
2 / 15 shared
Fielden, Matthew
1 / 2 shared
Bollström, Roger
1 / 10 shared
George, Steven M.
1 / 3 shared
Mäkelä, Jyrki M.
4 / 6 shared
Saarinen, Jarkko
4 / 6 shared
Törngren, Björn
1 / 3 shared
Kääriäinen, Tommi
1 / 3 shared
Swerin, Agne
1 / 7 shared
Ejenstam, Lina
1 / 2 shared
Pan, Jinshan
1 / 37 shared
Yli-Ojanperä, Jaakko
1 / 2 shared
Juuti, Paxton
1 / 3 shared
Harra, Juha
1 / 6 shared
Vippola, Minnamari
1 / 58 shared
Roumeli, Eleftheria
1 / 7 shared
Stepien, Milena
4 / 4 shared
Kuusipalo, Jurkka
4 / 14 shared
Teisala, Hannu
4 / 4 shared
Aromaa, Mikko
2 / 2 shared
Chinga-Carrasco, Gary
1 / 4 shared
Chart of publication period
2020
2019
2018
2016
2015
2014
2013

Co-Authors (by relevance)

  • Saarinen, Jarkko J.
  • Suvanto, Mika
  • Mäkelä, Jyrki Mikael
  • Temerov, Filipp
  • Ammosova, Lena
  • Pudas, Marko
  • Ronkainen, Helena
  • Valden, Mika
  • Mahlberg, Riitta
  • Sorvali, Miika
  • Vuori, Leena
  • Honkanen, Mari
  • Mäkelä, Jyrki
  • Gunell, Marianne
  • Toivakka, Martti
  • Rosqvist, Emil
  • Eerola, Erkki
  • Brobbey, Kofi J.
  • Peltonen, Jouko
  • Makela, Jyrki M.
  • Honkanen, Mari Hetti
  • Heydari, Golrokh
  • Tuominen, Mikko
  • Moghaddam, Maziar Sedighi
  • Claesson, Per M.
  • Fielden, Matthew
  • Bollström, Roger
  • George, Steven M.
  • Mäkelä, Jyrki M.
  • Saarinen, Jarkko
  • Törngren, Björn
  • Kääriäinen, Tommi
  • Swerin, Agne
  • Ejenstam, Lina
  • Pan, Jinshan
  • Yli-Ojanperä, Jaakko
  • Juuti, Paxton
  • Harra, Juha
  • Vippola, Minnamari
  • Roumeli, Eleftheria
  • Stepien, Milena
  • Kuusipalo, Jurkka
  • Teisala, Hannu
  • Aromaa, Mikko
  • Chinga-Carrasco, Gary
OrganizationsLocationPeople

article

Wetting hysteresis induced by temperature changes

  • Heydari, Golrokh
  • Tuominen, Mikko
  • Mäkelä, Jyrki Mikael
  • Moghaddam, Maziar Sedighi
  • Claesson, Per M.
  • Haapanen, Janne
  • Fielden, Matthew
Abstract

<p>The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7 °C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4 °C and -7 °C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost formation to occur.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • theory
  • experiment
  • titanium
  • wood