People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäkelä, Jyrki Mikael
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Silver nanoparticle coatings with adjustable extinction spectra produced with liquid flame spray, and their role in photocatalytic enhancement of TiO2
- 2023Synthesis of calcium phosphate nanostructured particles by liquid flame spray and investigation of their crystalline phase combinations
- 2023The effect of metal dissolution on carbon production by high-temperature molten salt electrolysiscitations
- 2021Crystallographic phase formation of iron oxide particles produced from iron nitrate by liquid flame spray with a dual oxygen flowcitations
- 2020Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wearcitations
- 2020Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2019Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated papercitations
- 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanizationcitations
- 2016Wetting hysteresis induced by temperature changescitations
- 2016Surface-Enhanced Impulsive Coherent Vibrational Spectroscopycitations
- 2015Long-term corrosion protection by a thin nano-composite coatingcitations
- 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensationcitations
- 2015Roll-to-roll coating by liquid flame spray nanoparticle depositioncitations
- 2014Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silicacitations
- 2013Ordered multilayer silica-metal nanocomposites for second-order nonlinear opticscitations
- 2012Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materialscitations
Places of action
Organizations | Location | People |
---|
article
Wetting hysteresis induced by temperature changes
Abstract
<p>The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7 °C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4 °C and -7 °C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost formation to occur.</p>