People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Crawford, Russell J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Dual-action silver functionalized nanostructured titanium against drug resistant bacterial and fungal speciescitations
- 2020Tunable morphological changes of asymmetric titanium nanosheets with bactericidal propertiescitations
- 2019Antibacterial Properties of Graphene Oxide-Copper Oxide Nanoparticle Nanocompositescitations
- 2019PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Sourcecitations
- 2015Impact of particle nanotopology on water transport through hydrophobic soilscitations
- 2011The influence of nanoscopically thin silver films on bacterial viability and attachmentcitations
- 2011The Effect of Polyterpenol Thin Film Surfaces on Bacterial Viability and Adhesioncitations
- 2009Effect of ultrafine-grained titanium surfaces on adhesion of bacteriacitations
Places of action
Organizations | Location | People |
---|
article
Impact of particle nanotopology on water transport through hydrophobic soils
Abstract
<p>The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle data as a function of the wetting liquid surface tensions. These linear relationships were found to reflect the mechanisms underlying the surface energy parameter requirements for wetting.</p>