People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ashfold, Mnr
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Diamond chemical vapor deposition using a zero-total gas flow environmentcitations
- 20153-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithographycitations
- 2014Tungsten oxide nanorod growth by pulsed laser deposition:citations
- 2011Highly conductive nanoclustered carbon:nickel films grown by pulsed laser depositioncitations
- 2005Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphitecitations
- 2004Controlling the size and alignment of ZnO microrods using ZnO thin film templates deposited by pulsed laser ablationcitations
- 2002The oriented growth of ZnO films on NaCl substrates by pulsed laser ablation
Places of action
Organizations | Location | People |
---|
article
3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography
Abstract
<p>We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti–sapphire laser, 50 fs pulse duration, 400 nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (<em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">colloid</sub></em>) and the liquid (<em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">liquid</sub></em>) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with <em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">liquid</sub> </em>< <em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">colloid</sub></em>, and (b) a combination of holes, created in the interstices between the colloidal particles, and bumps when using liquids with<em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">liquid</sub> </em>> <em style="border: 0px; font-size: 16px; margin: 0px; padding: 0px; vertical-align: baseline; font-family: Arial, Helvetica, 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', STIXGeneral, 'Cambria Math', 'Arial Unicode MS', sans-serif; color: rgb(46, 46, 46); line-height: 23.68px; word-spacing: -1.24453px;">n<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0;">colloid</sub></em> – and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.</p>