People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leroy, Philippe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Spectral induced polarization of nanoporous media
- 2016Modelling the spectral induced polarization response of water-saturated sands in the intermediate frequency range (102–105 Hz) using mechanistic and empirical approachescitations
- 2013Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kineticscitations
- 2013Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticlescitations
- 2009A mechanistic model for the spectral induced polarization of clay materialscitations
Places of action
Organizations | Location | People |
---|
article
Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles
Abstract
Zeta potential is a physicochemical parameter of particular importance in describing ion adsorption and double layer interactions between charged particles. However, for metal-oxide nanoparticles, the conversion of electrophoretic mobility measurements into zeta potentials is difficult. This is due to their very high surface electrical conductivity, which is inversely proportional to the size of the particle. When surface conductivity is similar to or higher than the electrical conductivity of bulk water, it can significantly lower the electrophoretic mobility of the particles. It follows that the magnitude of the apparent zeta potential determined from the Smoluchowski equation (disregarding surface conductivity) can be grossly underestimated. We use a basic Stern model to describe the electrochemical properties and to calculate the true zeta potential of amorphous silica nanoparticles immersed in NaCl solution. The parameters of our surface complexation model are adjusted by potentiometric titration and electrophoretic mobility measurements at high salinity (10(-1) M NaCl). Electrophoretic mobilities are calculated using Henry's electrokinetic transport model with specific surface conductivities and zeta potentials estimated by our surface complexation model. The very good agreement of calculated and measured electrophoretic mobilities confirms that the true zeta potential corresponds to the electrical potential at the outer Helmholtz plane (OHP). Consequently, the shear plane might be located close to the OHP. The assumption of the presence of a stagnant diffuse layer at the amorphous silica/water interface is therefore not required