People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prof
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Films based on TEMPO-oxidized chitosan nanoparticles
- 20233D-Printed Anisotropic Nanofiber Composites with Gradual Mechanical Propertiescitations
- 2022Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibilitycitations
- 2022Solid Phase Peptide Synthesis on Chitosan Thin Filmscitations
- 2021High oxygen barrier chitosan films neutralized by alkaline nanoparticlescitations
- 2021Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures
- 2020Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfacescitations
- 2019Novel Chitosan–Mg(OH)2-Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cellscitations
- 2019Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blendscitations
- 2018Modification of cellulose thin films with lysine moietiescitations
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2015Cellulose thin films from ionic liquid solutions
- 2014Preparation of PDMS ultrathin films and patterned surface modification with cellulosecitations
- 2014A study on the interaction of cationized chitosan with cellulose surfacescitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilizationcitations
- 2012Adsorption of carboxymethyl cellulose on polymer surfacescitations
- 2011Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulosecitations
Places of action
Organizations | Location | People |
---|
article
Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose
Abstract
<p>The wettability and surface free energy (SFE) of partly and fully regenerated cellulose model surfaces from spin coated trimethylsilyl cellulose were determined by static contact angle (SCA) measurements. In order to gain detailed insight into the desilylation reaction of the surfaces the results from SCA measurements were compared with data from other surface analytical methods, namely thickness measurements, X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance infrared spectroscopy (ATR-IR). Additionally, the influence of ultra high vacuum treatment (UHV) during XPS measurements on the water wettability and surface morphology of regenerated cellulose thin films was investigated. The wetting of polar and non-polar liquids increased with prolonged regeneration time, which is reflected in the higher SFE values and polarities of the films. After UHV treatment the water SCA of partly regenerated films decreases, whereas fully regenerated cellulose shows a higher water SCA. Therefore it is assumed that volatile desilylation products tend to adsorb on partly regenerated films, which strongly influences their wettability.</p>