Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahata, N.

  • Google
  • 1
  • 5
  • 82

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Tuning of texture and surface chemistry of carbon xerogels82citations

Places of action

Chart of shared publication
Figueiredo, J.
1 / 6 shared
Pereira, Mfr
1 / 32 shared
Suarez Garcia, F.
1 / 1 shared
Tascon, Jmd
1 / 1 shared
Martinez Alonso, A.
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Figueiredo, J.
  • Pereira, Mfr
  • Suarez Garcia, F.
  • Tascon, Jmd
  • Martinez Alonso, A.
OrganizationsLocationPeople

article

Tuning of texture and surface chemistry of carbon xerogels

  • Figueiredo, J.
  • Pereira, Mfr
  • Mahata, N.
  • Suarez Garcia, F.
  • Tascon, Jmd
  • Martinez Alonso, A.
Abstract

The influence of different activation processes on the textural and surface chemical properties of carbon xerogels was studied. Carbon xerogels were prepared by the conventional sol-gel approach using resorcinol and formaldehyde: two different pHs of sol-gel processing led to carbon materials with distinct pore size distributions. The materials were subjected to controlled activation by three different methods: activation by oxygen plasma, activation by HNO3, and activation by diluted air. Treatments with HNO3 and diluted air created oxygen groups on the external surface as well as inside the pore channels, whereas plasma is more suitable for introducing oxygen groups selectively on the external surface. Nevertheless, it was shown that samples with wider pores can be oxidized to some extent on the pore interiors by plasma. Significant changes in total surface area by air activation were observed.

Topics
  • impedance spectroscopy
  • pore
  • surface
  • Carbon
  • Oxygen
  • texture
  • activation