People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kontogeorgis, Georgios M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Composition-dependence of relative static permittivity in ePPC-SAFT for mixed-solvent alkali halidescitations
- 2024Investigation of the Alcohols and Water Hydrogen Bonding Structure via Monomer Fraction Studiescitations
- 2024The Connection between the Debye and Güntelberg Charging Processes and the Importance of Relative Permittivity: The Ionic Cloud Charging Processcitations
- 2023On the estimation of equivalent conductivity of electrolyte solutions; The effect of relative static permittivity and viscositycitations
- 2023Comparisons of equation of state models for electrolytes: e-CPA and e-PPC-SAFTcitations
- 2023Comparison of models for the relative static permittivity with the e-CPA equation of statecitations
- 2023How to account for the concentration dependency of relative permittivity in the Debye–Hückel and Born equationscitations
- 2023Extension of the eSAFT-VR Mie Equation of State from aqueous to non-aqueous electrolyte solutionscitations
- 2022Importance of the Relative Static Permittivity in electrolyte SAFT-VR Mie Equations of Statecitations
- 2022The true Hückel equation for electrolyte solutions and its relation with the Born termcitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2018A Multi-stage and Multi-level Computer Aided Framework for Sustainable Process Intensificationcitations
- 2013Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of Statecitations
- 2013Modeling of dielectric properties of complex fluids with an equation of statecitations
- 2012Comparison of the Debye–Hückel and the Mean Spherical Approximation Theories for Electrolyte Solutionscitations
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2004Chemical Product Design: A new challenge of applied thermodynamicscitations
Places of action
Organizations | Location | People |
---|
article
Adhesion between coating layers based on epoxy and silicone
Abstract
The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered. The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus of elasticity of the polymers involved have also been considered. It was found that adhesion problems might be due to inadequate wetting, the significantly different topographies, and differences in the mechanical strengths of the epoxies. Acid-base interactions calculated from the van Oss-Good theory were found useful in explaining the enhanced adhesion for some epoxy/silicon surfaces.