People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grunwaldt, Jan-Dierk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammoniacitations
- 2024Lifecycle of Pd Clusters: Following the Formation and Evolution of Active Pd Clusters on Ceria During CO Oxidation by In Situ/Operando Characterization Techniques
- 2024Unveiling the synergistic effects of pH and Sn content for tuning the catalytic performance of Ni^0/Ni_{x}Sn_{y} intermetallic compounds dispersed on Ce-Zr mixed oxides in the aqueous phase reforming of ethylene glycol
- 2024Pd loading threshold for an efficient noble metal use in Pd/CeO2 methane oxidation catalystscitations
- 2023Green methanol from renewable feeds : Towards scalable catalyst synthesis and improved stability
- 2021Design of bimetallic Au/Cu nanoparticles in ionic liquids: Synthesis and catalytic properties in 5‐(hydroxymethyl)furfural oxidationcitations
- 2020Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H$_{2}$O$_{2}$ synthesiscitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni$_{2}$FeGa for the hydrogenation of CO$_{2}$ into methanolcitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni 2 FeGa for the hydrogenation of CO 2 into methanolcitations
- 2020Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRDcitations
- 2020Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applicationscitations
- 2019Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of $Pt/γ-Al_{2}O_{3}$ and Its Performance in CO and NO Oxidationcitations
- 2019Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO-Rich Synthesis Gascitations
- 2019Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2citations
- 2019Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographiescitations
- 2019NH$_{3}$-SCR over V-W/TiO$_{2}$ Investigated by Operando X-ray Absorption and Emission Spectroscopycitations
- 2018Tuning the $mathrm{Pt/CeO_{2}}$ Interface by in Situ Variation of the Pt Particle Sizecitations
- 2018Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalystcitations
- 2018Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oilcitations
- 2018Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil
- 2017Comparison of the Catalytic Performance and Carbon Monoxide Sensing Behavior of Pd-SnO$_2$ Core@Shell Nanocompositescitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether productioncitations
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011Flame spray synthesis of CoMo/Al2O3 hydrotreating catalystscitations
- 2009Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopycitations
- 2007Combination of flame synthesis and high-throughput experimentation: the preparation of alumina-supported noble metal particles and their application in the partial oxidation of methanecitations
Places of action
Organizations | Location | People |
---|
article
Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol
Abstract
In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO<sub>2</sub> hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni<sub>5</sub>Ga<sub>3</sub>. These methods demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends on particle size, which suggests that the reaction is structure sensitive.