People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kazansky, V. B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5
Abstract
The reduction of Ga(CH3)3/ZSM-5 was closely followed by Fourier transform infrared spectroscopy and Ga K-edge X-ray absorption near-edge spectroscopy. Chemical vapor deposition of trimethylgallium on HZSM-5 (TMG/ZSM-5) resulted in the replacement of nearly all Brønsted acid protons by dimethylgallium species. Removal of the methyl ligands from the cationic Ga clusters gave charge-compensating Ga+ and species. At high temperatures and in the absence of hydrogen, the Ga+ species were the most stable, although decomposition of the species was very slow. Ga+ ions can be oxidized by nitrous oxide at low temperature (473 K), resulting in the formation of gallyl (GaO+) cations. A detailed comparison of the reactivity of Brønsted acid protons (HZSM-5) and Ga+ ions (reduced TMG/ZSM-5) in propane dehydrogenation showed that the former converted propane via protolytic cracking with methane, ethane, and propene as hydrocarbon products, whereas monovalent Ga+ ions produced propene almost exclusively. The reaction data suggest that propane was converted over Ga+ cations but not over cations. The initial rate of propane dehydrogenation was highest for GaO+ ions, although rapid deactivation was observed, due to the higher barrier for regeneration of GaO+ ions than for formation of less active Ga+ ions.ERRATUM : Journal of Catalysis, Volume 240, Issue 1, 15 May 2006, Page 85,