People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bilal, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa.citations
- 2021Simulation of the θ′ Precipitation Process with Interfacial Anisotropy Effects in Al-Cu Alloyscitations
- 2020Investigation and Modelling of the Influence of Cooling Rates on the Microstructure of AZ91 Alloys
Places of action
Organizations | Location | People |
---|
article
Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa.
Abstract
CuO Nanoparticles (CuO NPs) retard the plant growth but at appropriate concentration boosts shoot growth and therefore may function as nano-carrier or nano-fertilizer. To overcome the toxic effects, NPs can be capped with plant growth regulators. In this work, CuO-NPs (30 nm) were synthesized as the carrier and capped with indole-3-acetic acid (IAA) to generate CuO-IAA NPs (30.4 nm) as toxicity mitigant molecules. Seedlings of dicots, Lactuca sativa L. (Lettuce) were exposed to 5, 10 mg Kg<sup>-1</sup>/ of NPs in the soil to analyze shoot length, fresh and dry weight of shoots, phytochemicals, and antioxidant response. Toxicity to shoot length was recorded at higher concentrations of CuO-NPs, however, a reduction in toxicity was observed for CuO-IAA nanocomposite. Concentration-dependent decrease in the biomass of plants was also observed at higher concentrations of CuO-NPs (10 mg/kg). The antioxidative phytochemicals (phenolics and flavonoids) and antioxidative response increased in plants when exposed to CuO-NPs. However, the presence of CuO-IAA NPs combats the toxic response and a significant decrease in non-enzymatic antioxidants and total antioxidative response and total reducing power potential was observed. The results demonstrate that CuO-NPs can be used as a carrier of hormones for the enhancement of plant biomass and IAA on the surface of NPs reduces the toxic effects on NPs.