People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barreiros, Susana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2021Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systemscitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solventscitations
- 2017Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatincitations
- 2017Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hostscitations
- 2016Solubility and Permeability Enhancement of active compounds: Therapeutic Deep Eutectic Systems as New Vehicles for Drug Deliverycitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Design of controlled release systems for THEDES - therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2014Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technologycitations
- 2014Ion jelly conductive properties using dicyanamide-based ionic liquidscitations
- 2012Understanding the Ion Jelly Conductivity Mechanismcitations
- 2008Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaYcitations
Places of action
Organizations | Location | People |
---|
article
Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaY
Abstract
<p>Cutinase, an esterase from Fusarium solani pisi, was immobilized in sol-gel matrices of composition 1:5 tetramethoxysilane (TMOS):n-alkyltrimethoxysilane (n-alkylTMS). Fluorescence spectroscopy using the single tryptophan (Trp-69) residue of cutinase as a probe revealed that the polarity of the matrices decreased as their hydrophobicity increased up to the TMOS/n-butylTMS pair, which correlates with an increase in cutinase activity. Fluorescence emission was suppressed (a higher than two orders of magnitude reduction) in the TMOS/n-octylTMS matrix, suggesting a greater proximity of the tryptophan to a nearby disulfide bridge. When sol-gel matrices were prepared with added zeolite NaY, the fluorescence emission intensity maximum (λ<sub>max</sub>) of the tryptophan did not change. And although the presence of the zeolite led to the recovery of fluorescence emission from the TMOS/n-octylTMS matrix, the corresponding λ<sub>max</sub> fell in line with the values obtained for the matrices with lower n-alkyl chain lengths, indicating that the tryptophan does not sense the zeolite. On the other hand, the presence of the zeolite led to increases in cutinase activity in all the matrices. This suggests that the zeolite is in a position to affect the active site of the enzyme, located at the opposite pole of the enzyme molecule. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the zeolite particles were segregated to the pores of the matrices. Optical microscopy following the staining of the protein with a fluorescent dye showed that the enzyme was distributed throughout the material, and tended to accumulate around zeolite particles. By promoting the accumulation of the enzyme at the pores of the material, the zeolite should improve the accessibility of the enzyme to the substrates and lead to a higher enzymatic activity. Data obtained for sol-gel matrices with epoxy or SH groups provided further evidence that cutinase responded to changes in the chemical nature of the precursors.</p>